eCommons

 

The Physics Behind And Biosensing Applications Of Resonant Micro- And Nanomechanical Sensors

Other Titles

Abstract

The research presented herein focuses on the use of micro- and nanoelectromechanical systems (MEMS/NEMS) as mechanical resonators employed as sensors. The thesis describes the physical mechanisms underlying their use as sensors and demonstrates their utility in biosensing applications. This field is developing in the wake of the inception and widespread propagation of MEMS devices and scanned probe microscopies like atomic force or scanning tunneling microscopy. Recently there has been growing interest in their application to biological systems and the detection of low concentrations of biomolecules, where they could enable novel or deeper understandings of these systems or the onset and progression of disease. In order to push the limits of sensitivity to such levels, a full understanding of the sensing mechanisms is needed which, once attained, will shed light on appropriate sensor design parameters, materials, functional pattering, and the use of higher resonant modes. Two key themes that emerge from this work are the effect of device geometry and device optimization for use as biosensors. Especially important are the demonstrated applications of non-cantilever geometries and the results suggesting that these devices are also more sensitive and quantitative than cantilevers when the number of bound analytes on a device becomes very small. For biosensing applications, a "secondary mass labeling" technique has been developed that greatly improves device sensitivity to lightweight biomolecules specifically bound to the resonant sensors by effectively amplifying the mass of the analyte. After motivating the use of these sensors and providing a detailed discussion of the technology in general in Chapters 1 and 2, the experimental details of device fabrication and use are described in Chapter 3. Chapter 4 features in-depth discussion of the mathematical derivations and physics underlying the operation of these devices as sensors. Then in Chapter 5, the preparation of these devices for biosensing is described, and two realistic examples are demonstrated for the detection of prion proteins and prostate specific antigen. Together with the high device yield and rapid readout of devices, the results presented herein show great promise for real applications of this technology in medicine or other applications.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-08-05T16:20:38Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record