eCommons@Cornell >
Cornell University Graduate School >
Theses and Dissertations (OPEN) >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/1813/2956
Title:  Macroscopic modeling of quantum effects in semiconductor devices 
Authors:  Narayanan, Venkatasubramanian 
Keywords:  semiconductors carrier transport quantum effects quantum transport macroscopic modeling tunneling 
Issue Date:  4May2006 
Abstract:  This dissertation explores the use of macroscopic quantum hydrodynamic (QHD) models as tools for investigating the transport of charge carriers in semiconductor devices in the regime where quantum effects are important.
Chapter 1 provides a panoramic view of the field of carrier transport modeling in semiconductors. The essential differences between classical and quantum transport is brought out and a brief outline is given of the derivation of successively less detailed models from the fundamental starting points of the Boltzmann transport equation (BTE) for classical transport and the quantum distribution function (Wigner function, density matrix) based methods for quantum transport. A mention is made of the various quantum hydrodynamic models without going into the details of their derivation and applicability.
Chapter 2 brings into focus the area of quantum hydrodynamic modeling of carrier transport. A detailed derivation using the method of moments is presented for each of the popular quantum hydrodynamic models currently being explored in the literature, namely the densitygradient method and the smooth quantum potential model. A summary is made of their limitations and these limitations are then shown as arising out of particular assumptions made in their derivations that could hamper their applicable regimes.
Chapter 3 presents an analysis of the boundary layers near interfaces obtained in densitygradient theory. An integral equation for the density near such interfaces is obtained and this is used to analytically compare the DG solution with the solutions from oneelectron quantum mechanics in nondegenerate conditions. Confinement in simple potential wells is then discussed using the macroscopic equations.
Chapter 4 discusses the derivation of macroscopic equations to describe quantum mechanical tunneling through large barrier potentials. Using the approximate solutions of the Schr?dinger equation it is analytically shown that the density profile inside the barrier satisfies a second order differential equation, very similar to the Schr?dinger equation for a carrier at a suitably chosen average energy. Use of this is made to derive a consistent macroscopic treatment of tunneling transport in the insulating barrier.
Chapter 5, the final chapter, summarizes the major contributions of this dissertation and concludes it with several suggestions for future research directions that can stem from this work. 
URI:  http://hdl.handle.net/1813/2956 
Appears in Collections:  Theses and Dissertations (OPEN)

Items in eCommons are protected by copyright, with all rights reserved, unless otherwise indicated.
