eCommons

 

The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

Other Titles

Abstract

We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), epsilon-Co to Co2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP's structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from epsilon-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications.

Journal / Series

Volume & Issue

Description

Sponsorship

We thank Ken Finkelstein for his assistance with obtaining data, experimental setup at CHESS and advice concerning data analysis. We also thank the Pollack and Abruna groups for their helpful suggestions for conducting XAS experiments and analysis. We thank Peter Ko for his helpful discussion on EXAFS data analysis. This work was supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We also acknowledge support of Cornell Center for Materials Research (CCMR) with funding from the Materials Research Science and Engineering Center program of the National Science Foundation (cooperative agreement DMR 0520404), and the support of Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001086. L.M.M. is supported from the Engineering Learning Initiatives Undergraduate Research Grants Program at Cornell University, with sponsorship from the SRC Education Alliance URO by Intel Foundation.

Date Issued

2011-04-15

Publisher

Royal Society of Chemistry

Keywords

X-RAY-ABSORPTION; CATION-EXCHANGE; METAL NANOPARTICLES; MAGNETIC-PROPERTIES; SURFACE-STRUCTURE; ROOM-TEMPERATURE; FINE-STRUCTURE; IN-SITU; EXAFS; NANOCRYSTALS

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

http://pubs.rsc.org/en/content/articlepdf/2011/jm/c1jm10337g

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

J. Mater. Chem., 2011,21, 11498-11510

Government Document

ISBN

ISMN

ISSN

0959-9428

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record