eCommons

 

An In Situ Method of Creating Metal Oxide-Carbon Composites and Their Application as Anode Material for Lithium-Ion Batteries

Other Titles

Abstract

Transition metal oxides are actively investigated as anode materials for lithium-ion batteries (LIBs), and their nanocomposites with carbon frequently show better performance in galvanostatic cycling studies, compared to the pristine metal oxide. An in situ, scalable method for creating a variety of transition metal oxide-carbon nanocomposites has been developed based on free-radical polymerization and cross-linking of poly(acrylonitrile) in the presence of the metal oxide precursor containing vinyl groups. The approach yields a cross-linked polymer network, which uniformly incorporates nanometre-sized transition metal oxide particles. Thermal treatment of the organic-inorganic hybrid material produces nearly monodisperse metal oxide nanoparticles uniformly embedded in a porous carbon matrix. Cyclic voltammetry and galvanostatic cycling electrochemical measurements in a lithium half-cell are used to evaluate the electrochemical properties of a Fe(3)O(4)-carbon composite created using this approach. These measurements reveal that when used as the anode in a lithium battery, the material exhibits stable cycling performance at both low and high current densities. We further show that the polymer/nanoparticle copolymerization approach can be readily adapted to synthesize metal oxide/carbon nanocomposites based on different particle chemistries for applications in both the anode and cathode of LIBs.

Journal / Series

Volume & Issue

Description

Sponsorship

This material is based on work supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001086. JS acknowledges support from Award No. KUS-C1-018-02 made by King Abdullah University of Science and Technology (KAUST). Facilities available through the Cornell Center for Materials Research (CCMR) were used in the study.

Date Issued

2011-06-13

Publisher

Royal Society of Chemistry

Keywords

ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; NEGATIVE ELECTRODE; STORAGE; SNO2; CO3O4; CHALLENGES; REDUCTION; CAPACITY; FIBER

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

http://pubs.rsc.org/en/content/articlepdf/2011/jm/c1jm10902b

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

J. Mater. Chem., 2011,21, 11092-11097

Government Document

ISBN

ISMN

ISSN

0959-9428

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record