eCommons

 

Optically Driven Limit Cycle Oscillations In Mems

Other Titles

Abstract

We examine the dynamics of nanoscale bridge resonators fabricated from SOI wafers. When illuminated within an interference field, resonators are seen to self-oscillate due to feedback between heating and displacement. They are driven in high vacuum and their motion transduced with laser interferometry. Analysis of Maxwell's equations indicates that laser heating is not confined to the resonator's top surface. A finite element model is built to study thermomechanical coupling. Analysis shows that feedback is strongest in barely postbuckled beams, leading to low power self-oscillation. A theoretical model is built starting with the continuum description of the temperature and displacement fields and a Galerkin projection is used to obtain a set of coupled ordinary differential equations. These equations are analyzed using numerical continuation and perturbation theory. Analysis of the model suggests that a Hopf bifurcation leads to limit cycle oscillations and that multiple stable limit cycles may be possible due to periodicity in the interference field. The threshold power for self-oscillation as well as the amplitude, frequency, and frequency noise are measured experimentally. Measured amplitude-frequency relationships verify the predicted softening/hardening nature of first and second mode vibrations in pre- and post-buckled beams. Experimental results suggest that frequency noise in self-oscillating beams is due to instability in the power of the laser drive. Fluctuations in the laser power result in fluctuations of the resonant frequency via the power-amplitude-frequency relationship. Self-resonant beams are also driven inertially and regions of sub- and superharmonic entrainment are measured, where the resonator response frequency is a whole multiple or sub-multiple of the drive frequency.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-08-20

Publisher

Keywords

mems; Oscillator; Entrainment

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Zehnder, Alan Taylor

Committee Co-Chair

Committee Member

Rand, Richard Herbert
Vladimirsky, Alexander B.

Degree Discipline

Theoretical and Applied Mechanics

Degree Name

Ph. D., Theoretical and Applied Mechanics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record