eCommons

 

Density-Functional Theories For Solvent-Free Nanoparticle--Organic Hybrid Materials

Other Titles

Author(s)

Abstract

Density-functional theories are developed to address the equilibrium structure, solvent behavior, disordered-fluid-fcc-solid transitions, and the transport properties of solventless nanoparticle-organic hybrid materials (NOHMs) consisting of nanoparticles with tethered oligomers with no solvents. The coarse-grained model of hard spheres and attached bead chains combined with the assumptions of incompressible oligomers, faster relaxation of oligomers than core particles, and large ratio of the oligomer radius of gyration to the core radius that is useful to make a weak oligomeric-field approximation allows quasi-analytic determination of the equilibrium distribution function of the cores and the concentration field of oligomers, which then determine the system free energy. The static structure factor for monodisperse NOHMs shows zero value at zero wave number, indicating that each core carries the same amount of the fluid. Including bidispersity in the system leads to non-zero structure factor at zero wave number with stronger effects resulted from bidispersity in the oligomer grafting density than bidispersity in the core size. When the oligomers are short compared with the interparticle spacing, the entropic frustrations due to limited oligomer configurations yield stronger oligomer-mediated particle-particle correlations characterizing the entropic attraction among the cores. Meanwhile, higher solvent capacity is predicted as the solute releases the entropic penalty of oligomers. This thermodynamic driving force for solute uptake yields good CO2 selectivity over N2 and CH4 in NOHMs compared with unattached PEG melts or ionic liquids because the lower affinity of CO2 for oligomers make the chains retract and reduce more of the free energy. Since many neighboring particles cooperate in filling the space, solventless NOHMs can remain disordered even if the core volume fraction is above the freezing transition point of hard-sphere suspensions. Transport properties such as the long-time self-diffusivity and linear viscoelastic behavior are determined by solving for the non-equilibrium probability density function for pairs of particles subjected to a weak applied flow and many-body intercore potential of mean force without hydrodynamic interactions. Again, the theory predicts hindered particle dynamics as the stiffer oligomers feel more entropic penalty to fill the space.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-05-27

Publisher

Keywords

Density-functional theory; nanoparticle; complex fluids; statistical mechanics

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Koch, Donald L

Committee Co-Chair

Committee Member

Archer, Lynden A.
Widom, Benjamin

Degree Discipline

Chemical Engineering

Degree Name

Ph. D., Chemical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record