Skip to main content


eCommons@Cornell >
College of Engineering >
Earth and Atmospheric Sciences >
Active Tectonics, Geophysics, and Structure >
Middle East and North Africa Region Projects >

Please use this identifier to cite or link to this item:
Title: Tectonic and geologic evolution of Syria
Authors: Brew, Graham
Barazangi, Muawia
Al-Maleh, K.
Sawaf, T.
Keywords: Syria
Issue Date: 2001
Publisher: Gulf Petrolink
Citation: GeoArabia, vol. 6, no. 3, 2001
Abstract: Using extensive surface and subsurface data, we have synthesized the Phanerozoic tectonic and geologic evolution of Syria that has important implications for eastern Mediterranean tectonic studies and the strategies for hydrocarbon exploration. Syrian tectonic deformation is focused in four major zones that have been repeatedly reactivated throughout the Phanerozoic in response to movement on nearby plate boundaries. They are the Palmyride Mountains, the Euphrates Fault System, the Abd el Aziz-Sinjar uplifts, and the Dead Sea Fault System. The Palmyrides include the SW Palmyride fold and thrust belt and two inverted sub-basins that are now the Bilas and Bishri blocks. The Euphrates Fault System and Abd el Aziz-Sinjar grabens in eastern Syria are large extensional features with a more recent history of Neogene compression and partial inversion. The Dead Sea transform plate boundary cuts through western Syria and has associated pull-apart basins. The geological history of Syria has been reconstructed by combining the interpreted geologic history of these zones with tectonic and lithostratigraphic analyses from the remainder of the country. Specific deformation episodes were penecontemporaneous with regional-scale plate-tectonic events. Following a relatively quiescent early Paleozoic shelf environment, the NE-trending Palmyride/Sinjar Trough formed across central Syria in response to regional compression followed by Permian-Triassic opening of the Neo-Tethys Ocean and the eastern Mediterranean. This continued with carbonate deposition in the Mesozoic. Late Cretaceous tectonism was dominated by extension in the Euphrates Fault System and Abd el Aziz-Sinjar Graben in eastern Syria associated with the closing of the Neo-Tethys. Repeated collisions along the northern Arabian margin from the Late Cretaceous to the Late Miocene caused platform-wide compression. This led to the structural inversion and horizontal shortening of the Palmyride Trough and Abd el Aziz-Sinjar Graben.
Description: Publisher's version archived with permission from publisher.
ISSN: 1025-6059
Appears in Collections:Middle East and North Africa Region Projects
Prof. Muawia Barazangi

Files in This Item:

File Description SizeFormat
Brew et al 2001 GeoArabia.pdf17.16 MBAdobe PDFView/Open

Refworks Export

Items in eCommons are protected by copyright, with all rights reserved, unless otherwise indicated.


© 2014 Cornell University Library Contact Us