eCommons

 

Mechanobiological Analysis Of The Developing Atrioventricular Valve

Other Titles

Abstract

Valvular structural and functional defects account for millions of defects in human births, and their effects can be immediately life threatening or cause more subtle cell and/or matrix changes that can lead to functional defects later in life. Nearly all study of mechanical action on cellular function focuses on the "normal and pathological" adult age. This neglects key stages in the functional life cycle of tissues where remodeling is most active yet, controlled, early development. Until the basic interactions between cells and their microenvironment are understood in this context, our ability to understand congenital malformation and manipulate these phenomena remains limited. The objective of this thesis was to understand the role of mechanics combined with biology during the developmental process of valvulogenesis. This thesis demonstrates that valve interstitial cells respond to mechanical strain and directionality by regulating cellular proliferation, differentiation, and matrix remodeling. Using a novel bioreactor and in-vivo perturbation studies, we found that mechanical stretch directly inhibits myofibroblastic activation in mitral valve progenitor cells through a RhoA dependent mechanism. Consequently, Rac1 expression is promoted matrix condensation, as typically seen in mature quiescent leaflets. In post-natal valve maturation, we determined that tissue stretch correlates with tissue biomechanics and underlying cellular deformation. However, in pathological conditions such as Marfan Syndrome, tissue stretch becomes decoupled with cellular deformation by an unknown mechanism. Lastly, we modeled the molecular mechanisms of early cushion development applying systems biology model of ordinary differential equations. In addition to predicting and confirming a new heterogeneous phenotype, we concluded with 3 other possible hypotheses, which are included in the discussion. The biological and computer models developed in this thesis can be used in future experiments to explore the combined biological and mechanical regulation of multi-scale valve formation. My hope is that the results presented in this thesis will eventually be useful for developing efficient strategies to control tissue adaptation and remodeling as well as accelerate the construction of cardiovascular tissue replacements.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2014-01-27

Publisher

Keywords

Valvulogenesis; Mechanics; Biology

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Butcher, Jonathan T.

Committee Co-Chair

Committee Member

Varner, Jeffrey D.
Evans, Todd

Degree Discipline

Biomedical Engineering

Degree Name

Ph. D., Biomedical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record