eCommons

 

The Physiological Function And Regulatory Mechanisms Of The Unfolded Protein Response And Endoplasmic Reticulum Associated Degradation

Other Titles

Author(s)

Abstract

ER protein homeostasis plays an important role in normal organism physiological and pathological conditions. ER stress induces activation of the unfolded protein response, which reacts to reset ER homeostasis by enhancing protein folding capacity, reducing protein translation load and up-regulating ER associated degradation. It is important to understand the physiological role of each main UPR or ERAD component as well as their molecular regulatory mechanisms. IRE1[alpha], the most conserved UPR sensor protein, is a bifunctional enzyme containing both a kinase and RNase domain that are important for transautophosphorylation and Xbp1 mRNA splicing, respectively. However, the amino acid residues important for structural integrity remain largely unknown. This research has identified a highly conserved proline residue at position 830 (P830) that is critical for IRE1[alpha] structural integrity, hence the activation of both kinase and RNase domains. Further structural analysis reveals that P830 could form a highly conserved structural linker with adjacent tryptophan and tyrosine residues at positions 833 and 945 (W833 and Y945) thereby bridging the kinase and RNase domains. This finding may facilitate the identification of small molecules which specifically compromise IRE1[alpha] function. Previously, ER stress has been shown to activate inflammatory responses. Yet, whether this is true with ERAD in vivo remains to be demonstrated. Using macrophage-specific Sel1L (a key protein component of the Sel1L-Hrd1 ERAD complex) knock-out mice, our data challenges the causal link between ER stress and inflammation in a physiological setting. This research shows that Sel1L is dispensable for normal macrophage innate immunity functions. Although these macrophages exhibited elevated protein levels of a subset of ER chaperones and dilated ER cisternae at the basal conditions, surprisingly these changes are uncoupled from macrophage antigen presenting function, cytokine secretion function, and inflammatory responses against bacterial pathogens as well as in obese adipose tissues. Thus, we conclude that physiological mild ER stress may not play a causal role in inflammation in macrophages. ii

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2014-01-27

Publisher

Keywords

IRE1alpha; ER Associated Degradation; macrophages

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Qi, Ling

Committee Co-Chair

Committee Member

Long, Qiaoming
Lee, Siu Sylvia
Stipanuk, Martha Harney

Degree Discipline

Nutrition

Degree Name

Ph. D., Nutrition

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record