eCommons

 

Properties of short channel ballistic carbon nanotube transistors with ohmic contacts

Other Titles

Abstract

We present self-consistent, non-equilibrium Green's function calculations of the characteristics of short channel carbon nanotube transistors, focusing on the regime of ballistic transport with ohmic contacts. We first establish that the band lineup at the contacts is renormalized by charge transfer, leading to Schottky contacts for small diameter nanotubes and ohmic contacts for large diameter nanotubes, in agreement with recent experiments. For short channel ohmic contact devices, source-drain tunneling and drain-induced barrier lowering significantly impact the currrent-voltage characteristics. Furthermore, the ON state conductance shows a temperature dependence, even in the absence of phonon scattering or Schottky barriers. This last result also agrees with recently reported experimental measurements.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2006-08-30

Publisher

Institute of Physics

Keywords

nanotube; field effect transistor; non-equilibrium green's function; ohmic

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

F. Leonard and D. A. Stewart, Nanotechnology, 17, 4699 (2006)

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record