Skip to main content


eCommons@Cornell >
College of Engineering >
Earth and Atmospheric Sciences >
Active Tectonics, Geophysics, and Structure >
Middle East and North Africa Region Projects >

Please use this identifier to cite or link to this item:
Title: Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon
Authors: Gomez, F.
Karam, G.
Khawlie, M.
McClusky, S.
Vernant, P.
Reilinger, R.
Jaafar, R.
Tabet, C.
Khair, K.
Barazangi, M.
Keywords: Global Positioning System (GPS)
Dead Sea fault system
Crustal deformation
Transform faults
Issue Date: 2007
Publisher: Blackwell Publishing
Citation: Geophysical Journal International, vol. 168, p. 1021-1028, 2007
Abstract: Approximately 4 yr of campaign and continuous Global Positioning System (GPS) measurements across the Dead Sea fault system (DSFS) in Lebanon provide direct measurements of interseismic strain accumulation along a 200-km-long restraining bend in this continental transform fault. Late Cenozoic transpression within this restraining bend has maintained more than 3000 m of topography in the Mount Lebanon and Anti-Lebanon ranges. The GPS velocity field indicates 4-5 mm yr-1 of relative plate motion is transferred through the restraining bend to the northern continuation of the DSFS in northwestern Syria. Near-field GPS velocities are generally parallel to the major, left-lateral strike-slip faults, suggesting that much of the expected convergence across the restraining bend is likely accommodated by different structures beyond the aperture of the GPS network (e.g. offshore Lebanon and, possibly, the Palmyride fold belt in SW Syria). Hence, these geodetic results suggest a partitioning of crustal deformation involving strike-slip displacements in the interior of the restraining bend, and crustal shortening in the outer part of the restraining bend. Within the uncertainties, the GPS-based rates of fault slip compare well with Holocene-averaged estimates of slip along the two principal strike-slip faults: the Yammouneh and Serghaya faults. Of these two faults, more slip occurs on the Yammouneh fault, which constitutes the primary plate boundary structure between the Arabia and Sinai plates. Hence, the Yammouneh fault is the structural linkage that transfers slip to the northern part of the transform in northwestern Syria. From the perspective of the regional earthquake hazard, the Yammouneh fault is presently locked and accumulating interseismic strain.
Description: An edited version of this paper was published in Geophysical Journal International by Blackwell Publishing. Blackwell Publishing retains the copyright to this paper (Copyright 2007). See also:;
ISSN: 0955-419X
Appears in Collections:Middle East and North Africa Region Projects
Prof. Muawia Barazangi

Files in This Item:

File Description SizeFormat
Gomez2007_GJI_post-print.pdf2.85 MBAdobe PDFView/Open

Refworks Export

Items in eCommons are protected by copyright, with all rights reserved, unless otherwise indicated.


© 2014 Cornell University Library Contact Us