eCommons

 

An Accelerated Interior Point Method Whose Running Time Depends Only on A

Other Titles

Abstract

We propose a "layered-step" interior point (LIP) algorithm for linear programming. This algorithm follows the central path, either with shortsteps or with a new type of step called a "layered least squares" (LLS)step. The algorithm returns the exact global minimum after a finite numberof steps - in particular, after O (mathematical symbol omitted) iterations, where c(A) is a function of the coefficient matrix. The LLS steps can be thought of as accelerating a path-following interior point method whenever near-degeneracies occur. One consequence of the new method is a new characterization of the central path: we show that it composed of at most n-squared alternating straight and curved segments. If the LIP algorithm is applied to integer data, we get as another corollary a new proof of a well-known theorom by Tardos that linear programming can be solved in strongly polynomial time provided that A contains small-integerentries.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1993-10

Publisher

Cornell University

Keywords

theory center

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/93-155

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record