Skip to main content


eCommons@Cornell

eCommons@Cornell >
College of Engineering >
Computer Science >
Computer Science Technical Reports >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1813/6935
Title: Provably Good Approximation Algorithms for Optimal Kinodynamic Planning for Cartesian Robots and Open Chain Manipulators
Authors: Donald, Bruce Randall
Xavier, Patrick G.
Keywords: computer science
technical report
Issue Date: Feb-1990
Publisher: Cornell University
Citation: http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR90-1095
Abstract: We consider the following problem: given a robot system, find a minimal-time trajectory from a start state to a goal state, while avoiding obstacles by a speed-dependent safety-margin and respecting dynamics bounds. In [CDRX] we developed a theoretical, provably good approximation algorithm for the minimum-time trajectory problem for a robot system with decoupled dynamics bounds (e.g. a point robot in). This algorithm differs from previous work in three ways. It is possible (1) to bound the goodness of the approximation by an error term $\epsilon$; (2) to polynomially bound the computational complexity of our algorithm; and (3) to express the complexity as a polynomial function of the error term. Hence, given the geometric obstacles, dynamics bounds, and the error term $\epsilon$, the algorithm returns a solution that is $\epsilon$-close to optimal and requires only a polynomial (in ($\frac{1}{\epsilon}$)) amount of time. We extend the results of [CDRX] in two ways. First, we reanalyze the [CDRX] algorithm for robots with decoupled dynamics bounds. We halve the exponent in the polynomial bounds and prove a better approximation accuracy. These new results indicate that an implementation of the theoretical algorithm could be reasonable. We report on a preliminary implementation of the extended algorithm and experiments. Second, we extend [CDRX] to $d$-link, revolute-joint 3D robots will full rigid body dynamics. Specifically, we first prove a generalized trajectory- tracking lemma for robots with coupled dynamics bounds. Then, using this result we describe polynomial-time approximation algorithms for Cartesian robots obeying $L_{2}$ dynamics bounds and open kinematic chain manipulators with revolute and prismatic joints; the latter class includes most industrial manipulators. We obtain a general $O(n^{2}$(log$n$) ($\frac{1}{\epsilon})^{6d-1})$ algorithm, where $n$ is the geometric complexity.
URI: http://hdl.handle.net/1813/6935
Appears in Collections:Computer Science Technical Reports

Files in This Item:

File Description SizeFormat
90-1095.pdf5.75 MBAdobe PDFView/Open
90-1095.ps1.42 MBPostscriptView/Open

Refworks Export

Items in eCommons are protected by copyright, with all rights reserved, unless otherwise indicated.

 

© 2014 Cornell University Library Contact Us