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ABSTRACT

This paper proposes some system requirements for a small autonomous tractor that
includes some physical attributes as well as behavioural traits in certain conditions or
contexts. The tractor should be physically small, lightweight, reliable, have good real-
time communication facilities and be managed easily, especialy under fleet
management. Five internal and thirteen external contexts have been identified that can
be used to trigger different behaviours. Four operational modes for the tractor have
been identified. Field scouting and mechanical weeding have been identified and
described as the first two niche tasks likely to become autonomous.
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INTRODUCTION

The advances in information and telecommunication technologies have produced
significant changes in almost all disciplines, as well as agriculture. Moore's law
proposes that computer-processing power, delivered by the information technology
industry, will double every 18 months for the same price. What do we do with this
computing power now? Effectively, the more computing power we have, the more
complex problems we can solve. Most computer programmes are still highly
deterministic (finite state machines) that reflect the views and vaues of the
programmers, but with this power we should be able to have more sophisticated self-
modifying software that can adapt itself to the individual needs of the users as well as
improved modelling of, and interaction with, the real world. To be able to utilize these
advances in the agricultural mechanization, more intelligent machines are inevitable.

As world prices for food products fall and production subsidies are phased out, many
farmers today are under increasing financial pressure to remain a viable business.
Farmers are trying different ways to reduce the cost of production. Many farmers are
taking advantage of economies of scale in their farms such as increased farm size,
larger fields and bigger tractors that minimise the labour required per hectare. Thisis
leading to a more industrialised type of agriculture, which is at odds with many
environmental considerations.

To further improve the efficiency of developed agriculture, horticulture and forestry
found in northern Europe a concept is being developed to investigate if multiple small
autonomous machines would be more efficient than traditional large tractors. In order
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to meet this hypothesis a small tractor with intelligent control is proposed. These
vehicles should be capable of working 24 hours aday al year round, in most weather
conditions and have the intelligence embedded within it to behave sensibly in a semi-
natural environment such as horticulture, agriculture, parks and forestry, whilst
carrying out a useful task. Moreover, this system may have less environmental impact
if it can replace the over-application of chemicals and the high usage of energy, such
as diesel and fertiliser, by control that is better matched to stochastic requirements.
Additionally, it will have smaller incremental investment and lower labour costs.
Finally, it may have very low soil compaction that would lead to a more sustainable
production system. Some aspects of this concept appear in a US patent (Keller et al.,
2001). Auernhammer et al. (1995) also supported that the development of driverless,
small tractorsin agricultureis “entirely possible”.

The scale-reduction process, started by Precision Farming, may lead to the possibility
of individual plant care systems called Phytotechnology (Shibusawa, 1996). Precision
Farming is a set of methodologies that utilise technologies such as the Global
Positioning System (GPS), Geographical Information Systems (GIS) and
Management Information Systems (MIS) as well as the sensors and controllers in the
field, to reduce the area of management from the whole field down to sub field level.
Due to the increased data processing required to cover a complete field at the
individual plant level, only certain operations are carried out with human intervention,
but these processes lend themselves to different forms of automation, especialy in
high value crops. There are a number of field operations that can be executed by
autonomous vehicles, giving more benefits than conventional machines. Blackmore
and Griepentrog (2002) referred to a number of autonomous platforms that could be
seen in the future. These autonomous platforms would be used for cultivation and
seeding, weeding, scouting, application of fertilizers and chemicals, irrigation and
harvesting. Two good examples of this process are field scouting and mechanical
weeding.

Field scouting

There are many sensing techniques that can ascertain crop and soil conditions. A
number of them could be used now in existing production systems, apart from the fact
that they take a long time to process the data. Examples are weed recognition using
machine vision, multi-spectral response from the plant canopy that can indicate stress
(whatever the cause) and chlorophyll content that is associated with crop vigour.
Carbon dioxide (CO,) has been associated with soil health; Ethylene can be associated
with pest attack and soil conductivity has been correlated with soil moisture (Waine,
1999; Waine et al., 2000). Soil nitrates, organic matter, Charged-ion Exchange
Capacity (CEC), pH and soil moisture have been measured at different depths using
Near InfraaRed (NIR) reflectance with a soil photo spectrometer in real time
(Shibusawa, et al., 2000). lon Selective Field Effect Transistors (ISFETS) can be
modified to be sensitive to nitrates, pH and other factors from soil solution (Birrell,
S.J., Hummel, JW., 1993). Some of these sensing systems are still in the research
phase but they hold great promise to improve our understanding and management of
the growing crop and its environment.
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The reason some of these systems are not used now is that the associated cost of an
operator's time does not justify the information benefit. If these systems were
automated and mounted on an autonomous vehicle then the operator cost would be
significantly reduced, thus aso reducing the cost of data capture. A prototype
automatic steered vehicle has been described by Pedersen (Pedersen et a., 2002),
which provides such a platform, for a range of sensing systems. A new vehicle is
currently under construction.

M echanical weeding

As most horticultural crops are grown in widely spaced rows, inter-row mechanical
weeding (weeding between the rows) has been popular since mechanisation started.
The only problem has been in assessing the relative distance between the crop and the
weeding tool, as nowadays it is difficult to keep the tractor exactly parallel with the
crop row. Recent developments have led to the use of machine vision to recognise the
contextual information of the crop rows and steer the tool to within afew centimetres
of the plants. This idea was first tested in the early nineties (Hoffman, 1991;
Steinhauser, 1993) and has more recently been developed by Tillett (Tillett and
Hague, 1999) and commercialised by the Danish Institute of Agricultural Sciences
and Eco-Dan (Sogaard and Olsen, 2000).

Small automatically steered weeding vehicles have been developed by a number of
research teams recently. Tillett reports having developed a small reactive horticultural
toolbar that can recognise and spray each plant individually (Tillett et al., 1998). A
student project team at the Danish Technical University built a four-wheel drive, four-
wheel steering weeding platform (Madsen and Jakobsen, 2001). Research teams from
France and Spain report a high mobility robotic weeding mechanism (Blasco et al.,
2002). In Sweden an automatic steered weeding vehicle using machine vision has
been developed at Halmsted University (Astrand and Baerveldt, 2002).

SYSTEMS REQUIREMENTS

Both field scouting and mechanical weeding equipment as well as many more
devices, could be mounted on a small autonomous vehicle that could roam the field
carrying out its task over prolonged periods of time. To be able to achieve this, the
vehicle must have certain attributes and behaviours.

The main systems requirements for this proposed vehicle arethat it is:

Small in size (and therefore unmanned)

Light weight

Able to behave in a safe manner, even when partial system failures occur
Capable of being co-ordinated with other machines

Able to exhibit long-term sensible behaviour

Capable of receiving instructions and communicating information
Ableto carry out arange of useful tasks
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Small size

A small vehicle size implies higher precision of operation, lower incremental
investment and is relatively safe during system failures. The vehicles will probably be
1-2 metres long, large enough for stability but small enough to address safety factors.
The power will be in the 10-30 hp range to achieve the necessary energy density
requirements, as they will require an internal combustion engine (until fuel cells will
become realistic). Smaller vehicles of less than a metre in length and around five hp
could be developed for highly specialised tasks with low energy requirements such as
non-contact sensing. Incremental investment and replacement of the vehicle and high
production runs can be achieved by possibly using standard car components. The
farmer’s and the public’'s acceptance will be increased with the launch of small
autonomous vehicles rather than bigger ones. These vehicles will have the advantage
to be more site-specific than larger machines, due to their inherent size and higher
manoeuvrability. Inevitably, the smaller vehicle will have a lower work-rate but as it
will be unmanned, it can work for longer hours to compensate. These small machines
will be able to do selective and more precise treatments and can potentially be
developed to sense and care for individua plants or sub plant manipulation, such as
thinning, pruning, selective harvesting.

Light weight

The lightweight design parameter is important as it implies reduced soil compaction.
Chamen et al. (1994) identified that a 70% energy saving can be made in cultivation
energy by moving from traditional trafficked systems (255 MJha) to a non-trafficked
system (79 MJha). This was for shallow ploughing and did not include any deep
loosening. From this we estimate that 80-90% of the energy going into traditional
cultivation is there to repair the damage caused by traditional practices using large
tractors.

If we can accept the premise of alight intelligent vehicle replacing the large tractors,
there is the possibility to develop a completely new agricultural mechanisation
system. As we have the possibility of very low compaction and mechanical weeding,
then we may not need to plough, but use micro-tillage and direct drilling, which could
play a major role in conservation agriculture. As the natural healthy soil bio-system
modifies the soil structure into a near ideal situation for root development, almost zero
compaction agriculture could be developed that alows the natural processes to
enhance production rather than to compact the soil by heavy machinery and then
introducing energy to recreate a good soil structure. As the vehicle is inherently light,
it should also require lower energy inputs although this may be offset by the higher
efficiencies of the larger engines. If the vehicle is also more weather independent,
then field operations could be carried out better in accordance with agronomic needs,
instead of during small weather dependant windows of opportunity that alow large
machines on the soil.

Safety

Any autonomous vehicle should aways operate in a safe state even during partial
systems failure. Catastrophic failure is unacceptable. Safety is expressed in terms of
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safety to others, safety of self and safety of the crop. An assessment of internal and
external safety issues has been described by (Reid 2002). These safety issues are
addressed in terms of sensible behaviour during normal operation as well as when
parts of the system fail. Knowledge is needed about which system has failed and the
only way to achieve thisis by including redundant systems. These redundant systems
do not necessarily duplicate each other but offer an alternative method of assessment.
An example of redundant systems being used to improve the reliability of sensing is
described later as an expert sensing agent.

Redundant systems allow the capability of graceful degradation during partial system
failure. Graceful degradation is the process where parts of the system fail but the
overall system is capable of functioning even with a reduced capability. This
generaly involves only part of the task being fulfilled, which is arguably better than a
complete shutdown. Functionality is gradually reduced as faults increase. Only
systems with redundant sub-systems and the ability to self-diagnose faults can allow
this type of behaviour.

The primary safety modes for the vehicle and implement task will have been
identified as:
1. Nominal safe operation
All vehicle and implement systems are operating within normal parameter values
2. Safe operation with warnings
Operating safely, but there are some warnings about abnormalities (e.g. low fuel)
3. Partial system shut down — mobile
Partially shut down, although it remains mobile (e.g. cameralens obscured)
4. Partia system shut down —immobile
Partially shut down, the vehicle isimmobile (e.g. transmission fault)
5. Stopped — still communicating
Fully stopped but still communicating with the co-ordinator (e.g. internal fault)
6. Dead
The system has fully shut down or there is no communication with the co-
ordinator

To ensure that a controlled process is reliable, always available and safe, it is
necessary to perform condition monitoring, predictive maintenance and fault
diagnosis, as well as ensuring the quality of the system components (the sensors, the
actuators, the process control computers, etc.). One of the main goals should be an
early diagnosis (detection, isolation and identification) of faults, whilst they are
incipient and hard to detect and isolate. Another goal will be to ensure that the process
can tolerate faults through control system reconfiguration or by a graceful degradation
to safe and stable closed-loop performance. Human factors and man-machine
interfaces are the final links in the safe operation of technical processes so full data
about the vehicle and task should be available in an understandable form.

As these vehicles are being designed to work for long periods unattended, there is a
significant likelihood of theft. If someone approaches the vehicle, it should shut down
into a safe mode until the person goes away. A legitimate operator could have access
to the vehicle control by using a radio key fob but without it, the machine could go
into stasis recording activity and sending this record with its position back to the
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coordinating PC. If the vehicle was seen to move without powering the drive motors,
then atheft alarm could be triggered.

Even with all these precautions in place it is inevitable that computers fail from time
to time into unknown states that can allow random behaviours. To this end a smaller,
slower vehicle is seen as safer than alarger faster one.

Fleet management

A computer at the farm office, operated by the manager, will have a Management
Information System (MIS) that gives the overal assessment and control of the
autonomous vehicles and their functions. It is likely to be a set of information screens
and optimisation routines that can be used by the farm manager. High-level requests
can be made, such as monitor the crop for nitrogen stressin field 10 or carry out intra-
row weeding in field 5 with implement number 2. The coordinating program can then
allocate resources, (e.g. which tractors to use) prepare an initia route plan based on
the GIS and develop a suggested instruction set for the autonomous vehicles. The
manager can then review the proposed itinerary and make adjustmentsto it beforeit is
then downloaded to the vehicles.

When a new job is planned or a new vehicle is added to the team, an optimisation
routine can be invoked to calculate the best strategies, initial routes, placements etc.
for the vehicles. This overal plan can then be decomposed into specific tasks for each
vehicle and send via a radio link. The coordinating PC will aso hold the master GIS
that can be synchronised with the vehicle GIS (which is continuously updated) from
time to time. The coordinating PC will also prepare all the required operational and
application maps (based on the managers input) as well as storing the actual
treatments carried out by the vehicles. Other functions will keep records of the
logisticsin asimilar way to current agricultural software.

The MIS should also have an independent real-time video link to each vehicle with a
steerable camera so that the manager can get a quick impression of what the vehicles
are doing through tele-presence. This can be combined with a mimic status display of
all the functional parameters of the vehicles. An example of such a mimic display is
shown in Figure 1.
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Figure 1. Prototype mimic display of vehicle status

At times it may be more convenient to have a mobile base station, in the form of a
trailer, within a distant field that can serve as a remote docking station for logistics,
contain the differential GPS base station, radio repeater, weather station etc. It should
have the capacity to allow multiple machines to self dock on the trailer after work to
allow the operator to then hook it up to a car or tractor and move the whole system
back to the farm for servicing or storage.

As part of the overall design philosophy, these small vehicles must be capable of
coordination, cooperation and collaboration in different tasks. This would help to
improve the work rates and alow the time critical tasks to meet their deadlines by
scaling up the number of operational machines.

Coordination

Coordination of multiple vehicles must be carried out centrally within the MIS. Each
vehicle is working independently and does not necessarily know about other vehicles
but has its own task to carry out. An example would be where each vehicle would be
carrying out a different task in different fields.

Cooperation

Cooperation is where multiple vehicles are working in the same field and are aware of
each other and of what others are doing. If three vehicles were carrying out the same
task, such as mechanical weeding in the same field, then each vehicle should know
which rows other vehicles are working in before it selects a new row to start in. It
would not make sense for two vehicles to come head-to-head in the same row. Real
time communications between vehicles on a peer-to-peer basis would be needed.
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Collaboration

Collaboration is where multiple vehicles could share the same task at the same time.
An example would be for multiple vehicles to pull a large trailer that one vehicle
could not pull on itsown. Thisisavery difficult situation to manage effectively.

Autonomous, pur poseful behaviour

When attempting to analyse a situation for appropriate response, human behaviour
often refers to the current context of the situation as well as the event that triggers the
response. Thisfactor is so strong in humans, that the implicit, subliminal or contextual
information can override explicit communication but is often ignored in automation
although it is essential for sensible autonomous behaviours.

Contextual information and oper ational modes

There appear to be two classes of finite states for the context: internal and external.
Both can be assessed by the use of expert systems. The internal context can be
assessed by anaysing the internal states of the vehicle including fault finding
techniques. Internal contexts that have been identified are: nominal, agent failure,
unrecognised message, corrupt message, and parameters outside limits. External states
are much more complex and are assessed by considering combinations of internal and
external factors. Current examples are shown in Table 1.

Table 1. Showing examples of externa contextual situations

Name Description

Nomina Tractor stationary, in one of the predefined processes/modes (Route

stationary planning, Self Check etc)

Nominal Task  Tractor and implement carrying out predefined task

Navigating Tractor moving freely, implement stowed

Avoiding Following obstacle boundary

Threat Shutting down while tracking approaching object

Assessing Object sensed within threshold, tractor stopped and watching
behaviour of object

Skid Tractor moving faster than the wheels

Slip Wheels moving faster than the tractor

Stuck Wheels moving, stationary tractor

Sink Reduced clearance under tractor

Tilt Tractor beyond attitude limits

Weather Tractor experiencing weather beyond set limits

Theft Tractor shut down but moving after Threat (1)

Operational modes

A number of operationa modes have been initiated. These are navigational,
exploratory, self-awareness and implement task modes.

Navigational mode
A basic task for the tractor is to be able to navigate safely to a desired position. We

estimate that the vehicle will be navigating around 80-90% of its active time, as
positioning itself and its working tool will be the tractor’'s main requirement. The
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vehicle must be able to plan an efficient route to the target point taking into account
known objects, tracks, paths, gateways etc., as well as being able to react to unknown
objects or situations. This high-level deterministic route planning subsumes other
lower level reactive behaviours such as object avoidance.

Deterministic planning of the optimal route for the vehicle between the current
position and the desired position requires detailed information about the physical
terrain and attributes. Thistype of spatialy related datais best stored and processed in
a Geographical Information System (GIS) and will be an important part of the
vehicle's information system (Earl et a., 2000). Route planning software is currently
available but it must take into account the characteristics of the vehicle, such as width,
height, turning circle etc., as well as expected time of arrival so that speeds can be
caculated. The goa for the vehicle should be to arrive at a predetermined position,
attitude and time to given tolerances. To go through the centre of a gateway, the
positional tolerance for a small tractor could be +/- 0.5 m. but when inspecting an
individual plant the tolerance will be more like 1-2 cm.

During autonomous navigation the local proximity must be continually monitored for
objects that may become obstacles. A three concentric ring system is envisaged that
will supply appropriate contextual information about the distances to local objects or
localization. See Figure 2. A multiple object tracking system is also needed that can
prioritise importance. If a wide implement such as a spray boom is used then an
appropriate shaped polygon could be used instead.

Unknown
obstacle

2

Detection
Unknown

objects
Warning

Known object

Figure 2. @) Detection, warning and safety distances. b) Prioritised multiple object
tracking

When objects are detected, a Reactive Object Tracking agent (an agent is a dedicated
processor that is part of the overall system architecture) will track the range and
bearing of the nearest objects until it is clear that the object may become an obstacle,
the vehicle will slow its speed to a safe distance and then stop. If the object does not
move then the vehicle will perceive it as stationary and give an audible warning to an
animal or human to move out of the way. If the obstacle remains stationary then the
vehicle will go around it and record the size and position in the GIS. On the other

B. S. Blackmore, S. Fountas, and H. Have. “System Requirements For a Small
Autonomous Tractor”. Agricultural Engineering International: the CIGR Journal of
Scientific Research and Development. Manuscript PM 04 001. July, 2004.



10

hand, if the object moves, it will then wait for it to move out of the way and then
proceed. If finally the object approaches the vehicle, it will perceive the object as
threat, and it will close down into a safe mode until the threat goes away.

A specialised navigation mode is refuelling. When the tractor needs to refuel, restock
logistical requirements (e.g. replenish chemicals or replace worn tines) or need other
attention, it must navigate back to its base and connect with the docking station. Once
refuelled and restocked or manually repaired, it can then go back to the field and
continue.

Exploratory mode

The tractor should be fitted with local environment sensing systems, which will
enableit to explore and record an unknown environment. If the vehicleisinitiaised in
an unknown area with an empty GIS, it can start to populate the GIS with its own
data. In the exploratory mode, the vehicle will rely on a Reactive Navigation agent to
find a clear path ahead and record data from all the sensors at the current position. If it
assesses that it is safe to move ahead it will then move slowly recording relevant data
into an occupancy grid as it moves. Once the boundary of an area has been explored
and surveyed, more optimal deterministic route plans can be made to complete the
survey. Alternatively, a self-adaptive survey based on the position and the results
from the spatial sensor could be used. Fewer readings could be taken from seemingly
homogenous areas, while more intensive sampling can occur in areas of
heterogeneity.

Self-awar eness mode

The tractor will also be fitted with self-sensing systems built into it to keep a check
that all the major parameters are within normal limits. Some of these parameters will
be fuel level, engine temperature, tilt angle and outside temperature. If any of these
parameters go outside expected limits, it can give non-critical warnings but if they are
seen as critical then the vehicle can move into one of its safe modes. This behaviour is
not mutually exclusive to any of the other modes so may be run entirely in parallel as
a separate process or agent.

Implement task mode

The tractor should have mechanical, electrical and communication interfaces to allow
a range of implements to be fitted so that the vehicle and implement can undertake
specific tasks such as mechanical weeding or crop sensing. The mechanical interface
is likely to consist primarily of a category zero three-point linkage, which is a
recognized standard coupling. Alternative arrangements may be considered if atighter
mechanical coupling is required. The power and the communication interface may
well utilize another existing standard such as the control area network (CAN) bus or
LBS connector. The tractor will supply the motive power and positioning for the
speciaist implement but another controlled degree of freedom may be introduced
between the tractor and implement to achieve higher levels of accuracy than
controlling the tractor position alone. Common data, such as positioning and attitude
is more closely linked with the vehicle asiit is likely to be required by all implement
tasks. The Implement Task agent should have access to the tractor data as well as its
own dedicated implement database. Each implement will have at least one agent (job
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computer) to control the implement tasks and send requests to move to the vehicle.
Whilst the implement task is active, the implement controller should control the
actions of the tractor. The implement will have at least one ‘focus area’. That is, the
active area near the implement such as the view from the camera or weeding area of
the tine. This must be matched up to the ‘target area’ by moving the vehicle or the
implement (in the case of the extra degree of freedom). In either case, when the
implement has finished in one area, it will instruct the vehicle to move to the next
area. If a continuous process can be achieved then the vehicle could move along a
predefined path while the implement works independently.

Each implement will have its own specia requirements for calibration and error
checking. It is envisaged that each Implement Task agent will have sub-behaviours
and that al the processes can be properly calibrated or checked. This will allow the
task to periodically carry out a self-check to ensure al functions are working
correctly. If an implement task recognises that the weeding tines are worn or that the
camera lens is obscured it can carry out remedial action, request assistance or return
to base for servicing.

CONCLUSIONS

In conclusion, we have tried to set out a framework of specifications that should be
able to assist with the design of an autonomous tractor. |ssues relating to both the way
the machine should be designed as well as the way in which the machine should
behave have been discussed. The two key issues are size and reliability. These
machines should be small enough not to cause significant compaction and they should
behave sensibly and reliably in the agricultural context. Truly intelligent machines are
a long way off, but the design of machine behaviours that are sensible in certain
contexts are very real today. With this framework in mind we are another step closer
to achieving our goal of building an autonomous tractor.
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