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Abstract

The purpose of this paper is to give simple new proofs of
some interesting recent results about the relative succinctness
of different representations of regular, deterministic and unam-
biguous context-free languages and to derive some new results
about how the relative succinctness of representations change
when the representations contain a formal proof that the languages

generated are in the desired subclass of languages.

This research has been supported in part by National Science Foundation
Grant DCR75-09433 and MCS 78-00418.



Introduction

It has been shown recently that there exist dramatic com-
pression of the length of representations of languages in sub-
classes of context-free languages as we go from restricted to
unrestricted representations of these languages [2,4,5). For
example, when we consider the representation of deterministic
context-free languages by deterministic versus nondeterministic
pushdown automata, then there is no recursive function which can
bound the size of the minimal deterministic pushdown automaton as
a function of the size of the equivalent minimal nondeterministic
pushdown automaton (5)}. It is well known that we cannot re-
cursively decide whether a given pushdown automaton has a equi-
valent deterministic pushdown automaton, but the above result
makes a considerably stronger statement: even if we would know
(or be given) which pushdown automata describe deterministic lan-
guages, we still could not effectively write down the correspon-
ding deterministic pushdown automata because of their enormous size
which grows nonrecursively in the size of the nondeterministic push-
down automata. Therefore we see that though nondeterminism is not
needed in the description of nondeterministic context-free lan-
guages its use 1p the description permits nonrecursively bounded
shortening of infinitely many representations.

Similar results hold for the relative succinctness of the
description of unambiguous cfl's by unambiguous and ambiguous cfg's
[4), and the description of finite or regular sets by finite auto-
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mata and pushdown automata [2].

Some of the original proofs of these results are quite hard
and they require special results about context-free languages. In
the first part of this paper we give a very simple, elementary proof
that the relative succinctness of representing deterministic context-
free languages by deterministic or nondeterministiclpushdown automata
is not recursively bounded, and using a result about inherently
ambiguous cfl's and Turing machine computations [3], derive an
equally simple proof for the representation of unambiguous cfl's
by unambiguous or ambiguous context-free grammars. The results
about the representation of finite and regular sets can be easily

proven by the same methods.

In the representation of deterministic cfl's by deterministic
pda's we can easily check whether a given pda is deterministic, on
the other hand, for a nondeterministic pda we have no obvious way
of verifying that it accepts a deterministic cfl. Therefore the
question arises whether the relative succinctness of the two repre-
sentations is caused by the fact that in one representation we can
prove what we are accepting but that no such proofs are possible
in the other representation.

Indeed a close inspection of the original proof [2] reveals
that it does not hold when we represent dcfl's by dpda's or pda's
with attached proofs that they accept deterministic cfl's.

In the second part of this paper we show that our proof tech-
niques furthermore prove that, for example, the relative succinct-
ness results hold for the representation of dcfl's by deterministic
pda and nondeterministic pda with attached proofs that they accept

deterministic cfl's.
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Finally, to gain further insight how the inclusion of formal
proofs of correctness in representaﬁions of languages affects their
succinctness, we consider the representation of finite sets. We
show that there is no recursive bound in the relative succinctness
of the representation of finite sets by finite automata or Turing
machines (even if we attach proofs that the Tm accepts a finite
set). On the other hand, we show that the relative succinctness
is recursively bounded for the representation of finite sets by
finite automata or Turing machines with proofs which explicitly give
the cardinality of the finite set accepted.

It follows from the results that the relative succinctness is
not recursively bounded for the representation of finite sets by
finite automata (or tables) or Turing machines which accept them,
but that there is a recursive bound for the representation of finite
sets by finite automata (or tables) and Turing machines which list

them and halt.

Succinctness Results about CFL's

We first establish notation and summarize some well known facts
about context-free languages (cfl's).

We denote pushdown automata (pda) by Ai and deterministic
pushdown automata (dpda) by Dj' Let [Ail denote the length of the
description of the automaton Ai over some finite alphabet and L(Ai)
the language accepted by Ai. We consider only one-tape Turing
machines, denoted by Mi’ and for technical reasons we assume (withou
any loss of generality) that Mi can halt only after an even number
of moves, Mi accepts by halting and that it makes at least two moves

before halting, finally assume that Hi cannot print a blank. An
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instantaneous description of My depicts the symbols written on the
tape, indicates the tape square scanned by My and its state; they

are strings of the following form:
-t*(a,q)t*~-,-(-,q)L*~- or -L*(-,q)~-,

where - denotes a blank tape square, I is the finite alphabet of
symbols.u1 can print, a ¢ £ and q is a state of M;. For Tm M; IDo(x)
denotes the instantaneous description of the starting configuration
on input x and IDl(x),Ibz(x).... denote the successive instantaneous
descriptions of Mi on input x. If x = a,a,...a then x' = aa e
aja,. Let VALC[Hi] denote the set of valid computations of Ml in

which every second instantaneous description is reversed, i.e.

VALC(M; ] = {#1D, (x) # [ID, (x) ) T#ID,(x) ... #[ID,, _, (x)]T#ID,, (x)#] x « L*
and IDZk(x) is a halting configuration}.

‘INVALC[M’_] = ¢ - VALC[Mi].

It is well knowq.ihdt INVALC[Mil can be accepted by a nondetermin-
istic pda and metgféze it is a cfl [1]. On the other hand, var.cmg
is a cfl iff L(Mi}ﬁiilg finite set, since otherwise for arbitrarily
large inputs x ‘the éﬁiée first instantaneous descriptions must be
related and the cfl pumping lemma does not hold. This yields the

well known auxiliary result.
Lemma 1t INVALC[Hil is a deterministic cfl iff L(Hi) is finite.

Proof: If L(Mi) is finite then INVALClMi] is a regular set and

thercfore a dcfl. If L(Hl) is infinite then VALC(M‘] is not a

cfl and therefore INVALClMlI cannot boe a dafl, -
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Lemma 23 The set R = {Ai | L(Ai) is not a dcfl) is not recursively

enumerable.

Proof: Since INVALC[Mi] is a deterministic cfl iff L(Hi) is finite,
a recursive enumeration of R would yield a recursive enumeration of
the set {M; | L(M;) is infinite}, which is seen not to be possible

by Rice's theorem. {

For two representations, such as the representation of deter-

ministic cfl's by deterministic and nondeterministic pda‘s, we

will say that their relative succinctness is not recursively bounde

if there does not exist a recursive function P such that for any
pda, A, which accepts a deterministic cfl, there exists an equiva-

lent deterministic pda, D, for which |D| s F(]A]).

Theorem 3: The relative succinctness of representing deterministic
cfl's by deterministic and nondeterministic pda‘'s is not recursivel

bounded.

Proof: 1If such a recursive P exists then for any pda A we can com-
pute F(|A|) and effectively list the dpda's whose length of descrip

tion does not exceed F(|A|), say Dy /Dy 4e..,Dy . Then L(A) is a
1 2 8

nondeterministic cfl iff none of the D; o 1sj<s, is equivalent to

A, but {f this is so then we can detect it by comparing the D‘ and
b)

A on successive inputs from I*. Therefore the existence of F impli

that the set

{A | L(A) 18 not a dcfl}

is recursively enumerable, which we know is not the case by Lemma 2

Therefore, F does not oxist as was to be shown.
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Next we consider the relative succinctness between the repre-
sentation of unambiguous cfl's by unambiguous and ambiguous cfg's.
We exploit a recent result (which is given in a somewhat dif-

ferent formulation in) [3]. For any Tm, Mi' let

I T *
Ag(M;) = {#ID (x) # ([ID;)74 1Dy, #) |
xDj+1 follows from IDj by one operation of Mi' X ¢ I*}
T
AE(Mi)-H(IDJ. Hmjdl 1)* 1D, ¢ | mj’\1 follows from n:oj in
pne operation of My and D, is a halting configuration.}

and define
A(Mi) = As(Mi) v AE(Mi)

It is easily seen that A(Mi) is a context-free language and it links
the ambiguity question for A(Mi) to finiteness of sets accepted by

the Turing machine Hi'
Theorem 4: A(MQ is an inherently ambiguous cfl iff L(Mi) is infinite.

Proof: See [3]. L

Theorem 5: The relative succinctness of representing unambiguous

cfl's by unambiguous and ambiguous cfg's is not recursively bounded.
Proof: If a recursive bound F exists, then the set
AMB = {G | G cfg and L(G) is inherently ambiguous}

is recursively enumerable. To see this note that we can list for
any cfg G all cfg's whose representations are shorter than F(|G])

and then cross of f those grammars which are found to be ambiguous or
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not equivalent to G as we test them on successive strings from I*,
L(G) is inherently ambiguous iff eventually all grammars from the
list are crossed off. Thus the set AMB is recursively enumerable

and therefore, (by Theorem 4) so is the set
{Mi | L(Mi) is infinitel,

which leads to a contradiction. Therefore the recursive bound F

does not exist.

By the same method we can give an easy proof for the next result

[1].

Theorem 6: The relative succinctness of the representation of co-

finite sets by finite automata and pushdown automata is not recur-
sively bounded. Therefore the relative succinctness of the repre-
sentation of regular sets by finite automata and pushdown automata

is also not recursively bounded.
Proof: Similar to the proof of Theorem 3, by using the set
R = (Ai“‘mi) is not cofinite}. ]

The same reasoning shows that there is no recursive bound
between the size of context-free grammars (which generate.cfl's
whose complements are also cfl's) and the size of the cfg]s gener-

ating the complements.

Theorem 7: There is no recursive function F such that for any cfg
G such that I* - L(G) is a cfl, there exists a cfg, G', with

L(G') = t* - L(G) and |G'| s F(|G]).
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Proof: Similar to the proof of Theorem 3. ' U]

Succinctness Results about Verified Representations

In the representation of deterministic cfl's by deterministic
and nondeterministic pda's we can easily verify that a given auto-
maton is indeed deterministic, but for the equivalent nondetermini-
stic pda's we have no fixed way of verifying that it will accept a
deterministic cfl. This lack of symmetry in our representations
suggests that we should consider only representations by nondeter-
ministic pda's with attached proofs that they accept a determini-
stic language and add the length of the proof to the length of the
representation of the pda.

A close inspection of the original proofs [2,4,5) reveals that
they do not extend to the representation with added proofs. On the
other hand our proof techniques show that the previous succinctness
results can be extended to representations with attached verifica-
tions that they accept the desired type of language.

More precisely, let FS be an axiomatizable, sound formal mathe-
matical system which is powerful enough to express and prove elemen-
tary facts about Turing machines, context-free languages and push-
down automata. Since FS is axiomatizable we know that we can
recursively enhmerate the set of provable theorems and soundness
assures as that the provable theorems are true. Instead of speci-
fying FS in detail we will describe what must be easily provable in
FS.

a) Lot Mc(r) bo a simply and uniformly constructed T™m which

for ovach input x computos and savos theo lungth of x,

|x| = n; then enumerates all one-tape Tm's up to length r,
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i.e. |"1| < r, and simulates in a dowe-tail manner the com
putations of this finite set of machines on blank tape.

Mq(r) halts (and therefore accepts) iff some Mg, I"i' <r,
halts after performing n or more steps. From this constru

tion we see that for all r, r 2 1, M accepts a finite

o(r)
set. We assume that FS is sufficiently powerful that we

can prove in FS that L(M )) is finite and that the lengt

o(r
of these proofs is recursively bounded in r.

We furthermore assume that there is a simple and uniform
construction p which yields for each ™m H‘ a pda Ap(i)
such that

L(Ap(l)) - INVALC(Hil

and that it can be proven in FPS (by a proof whose length i
recursively bounded in i) that:

if L(Mi) is finite then L(Ap(i)) - INVALC[Hi]

is a deterministic cfl.

From these assumptions it follows that we can prove (eagily)

in PS that:

Ap(o(r)) accepts a deterministic cfl.

It should be observed that in any logic designed to reason

about computations we should be able to formulate and prove easily

the above result. Furthermore, to any given sound formal system wq

can add the above assertions as an axiom scheme to obtain the de-

sirod F8.



-10-

A nondeterministic pda with an attached proof in FS that it

accepts a deterministic cfl is called a verified pda or vpda.

Theorem 8: The relative succinctness of representing dcfl's by

dpda‘'s and vpda's is not recursively bounded.

Proof: For r, r 2 1, let M be a Tm which accepts all inputs
L)

a(r)
up to length N, where Nr is the maximal running time before halting

achieved by a Tm of size r on blank tape. Let A be a non-deter-

p (i)
ministic pda which accepts INVALC[Mi]. It is assumed that o(r) and
p(r) are simple enough to compute and that FS is sufficiently rich

that there exist short proofs (whose length is recursively
bounded in r) that L[Ha(r)] is finite and therefore L[Ap(o(t))] is a

deterministic cfl.

If there exists a recursive bound F between 'Ap(o(r))' and the
shortest equivalent dpda, then we can list all the dpda's
Dil,niz,...,nis, such that Ioijl < F[|Ap(o(r))|], 1<jss.

From this list of dpda's we can effectively construct a list of
dpda's which accept the complements of these languages. From this
new list we can effectively select the dpda's which accept finite
sets and compute the longest string accepted by these dpda's.
Clearly the length of this string is bigger than Nr and therefore

Nr is recursively bounded in r, which is a contradiction. ]

By exploiting the fact that we can recursively enumerate the

vpda's we can prove the next result.

Corollary 9: There is no recursive succinctness bound between the

representation of dcfl's by verified pda's and pda's.
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By assuming that we can easily prove in FS relations between

A(Mi) and ambiguous cfl's we obtain the next result.

Corollary 10: There is no recursive succinctness bound between the
representation of unambiguous cfl's by unambiguous cfg's and
ambiguous cfg's with proofs that they accept unambiguous cfl's, nor
is there a recursive bound between the representation of unambiguous
cfl's by ambiguous cfg's with proofs that they accept unambiguous

cfl's and cfg's.

Representation of Finite Sets

The situation changes drastically if we consider representation

of finite sets and finite sets of known size.

Theorem 11: a) There is no recursive succinctness bound for the
representation of finite sets by finite automata and by Tm's with
proofs that they accept finite sets.

b) There is a recursive succinctness bound for the representa-
tion of finite sets by finite automata (or tables) and Tm's with
proofs which explicitly give the size of the finite set accepted.

c) There is a recursive bound for the relative succinctness
of representing finite subsets by finite automata (or lists) and
Tm's with proofs that they print a list and halt.

Proof: a) Let M be the Tm constructed for the proof of Theorem

o(r)
8 and recall that we have assumed that our formal system FS is suf-
ficiently rich to prove, by proofs whose length is recursively

bounded in r, that L(ac(r
plus the length of the proof in FS that L(Ma(r)) is finite is re-

)) is finite. Therefore the length of Ma(r)
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cursively bounded in r. On the other hand, since L("u(r)’ is finite

the number of states of any finite automaton accepting L(M )) must

o(r
be no less than the length of the longest string in L(Mu(z))' which

by construction of Mo( is not recursively bounded in r. Therefore,

r)
the relative succinctness of these two representations cannot be

recursively bounded.

b) The relative succinctness bound F can be constructed as follows.
For n construct all proofs of "M1 accepts a set of size k", i,k =
1,2,..., such that IMiI plus the length of the proof is less or egual
to n. For the M1 with such proofs let kn be the cardinality of the
largest set accepted and a, the length of the longesat string accepted.

Clearly kn and a are effeétively computable and
F(n) = a, kn + 2

is such a recursive bound.
c) For any n we can effectively list the finite set of Tm's ,

Hil' "iz'....uik' such that
|Mi | + |proof that M, prints a list and halts| < n.
3 b

Therefore we can run all the Tm's on this 1list, which are guaranteed
to halt becans; FS is sound, and determine the length of the longest
string printed, no. Clearly L is recursively computable from n,

by the above procedure, and, furthermore, the size of the largest

minimal finite automaton accepting the sets L(Mi ) L(M1 Yosoen
1 2
L(Hi ) is recursively bounded in L Therefore the size of the
k

finite automata representation of these sets is recursively bounded

to n and therefore to the size of the Tm representation with proofs. @8
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