SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3301

TECHNICAL REPORT NO. 1092

April 1994

A Class of

Pulse Processes
by

R. Cioczek-Georges, B.B. Mandelbrot
G. Samorodnitsky?, and Murad S. Tagqu'

1Partially supported by the ONR Grant N00014-90-J-1287 at Boston University.



A class of pulse processes **

R. Cioczek-Georges B.B. Mandelbrot G. Samorodnitsky Murad S. Taqqu
Yale University Yale University Cornell University Boston University

April 21, 1994

Abstract

A class of a-stable, 0 < a < 2, processes is obtained as a sum of “up-and-down” pulses determined
by an appropriate Poisson random measure. Processes are H -self-similar with H < 1/a and have
stationary increments. Their two-dimensional dependence structure resembles that of the fractional
Brownian motion (for H < 1/2), but their sample paths are highly irregular (nowhere bounded with
probability 1). Generalizations using different shapes of pulses are also discussed.

1 Introduction

This paper presents a physical construction that yields a class of self-similar Lévy stable processes
(not necessarily symmetric) with stationary increments. A process {X(t), t > 0} is obtained as a
sum of an infinite number of pulses whose height varies by jumps, i.e. discontinuities, to be called
rises or falls. Consider the initial jump of a given pulse. Its time of occurrence and its height are
governed by the Poisson random measure that is classically used to obtain Lévy stable motions (cf.
e.g. It (1969)). But in our construction a pulse does not reduce to this initial jump. In the case
of the simplest “up-and-down” pulses every “rise” (or “fall”) of a pulse is to be followed by another
“fall” (“rise”) of the identical absolute size, a “canceling echo”, which occurs after a random duration
of time. General pulses may involve more than two jumps, but the ups and downs must always cancel
out. This more complicated random scenario causes increments of the process {X(t), t > 0} to be
dependent, while the increments of the Lévy motion are independent.

However, the increments remain stationary, i.e. {X(t+b)— X(b), ¢ > 0} 4 {X(t)—- X(0), t >0}
for all b > 0, where «L» denotes equality of finite-dimensional distributions. In addition, the process
is also self-similar, more precisely, self-affine, i.e. there exists H > 0, such that {X(at), t > 0} 2
{a¥ X (t), t > 0} for all @ > 0. It is known (cf. Kéno and Maejima (1991) or Samorodnitsky and
Taqqu (1994)) that for a-stable processes, with the characteristic exponent 0 < a £ 2, the self-
similarity constant H must satisfy 0 < H < max(1,1/a). In our case H < 1/a and its specific
value will depend on the distribution of the pulse width. Lévy motions have a single scaling exponent
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H = 1/a and the reason for introducing our {X(), ¢t > 0} was the desire to provide a physical
construction of processes for which H # 1/a.

The one-dimensional distributions of {X(t), ¢ > 0} are symmetric a-stable (SaS) and the
joint multidimensional distributions are stable, but need not be symmetric. In fact, the symmet-
ric {X(t), t > 0} falls in the category of Chentsov-type processes obtained by Takenaka (1991)
by means of integral geometry and extensions thereof considered by Mori and Sato (1994). While
Takenaka’s representation is valid only in the symmetric case, ours works both in the symmetric
and non-symmetric cases. The dependence structure of Chentsov-type processes, as shown by Sato
((1989), (1991)), is determined by their 2-dimensional distributions. So is the dependence structure
of our process {X(t), ¢ > 0}, even in the nonsymmetric case.

We also examine the behavior of the normalized codifference and the normalized covariation of
nonoverlapping increments of {X(t), t > 0}. Both the codifference and the covariation extend the
notion of covariance to the non-Gaussian case. For our process {X(t), ¢ > 0}, the normalized codiffer-
ence and covariation, as well as another measure of dependence introduced here, all are equal to the
correlation of the increments of fractional Brownian motion—a self-similar Gaussian process. If the
classical terminology of the second order processes were to be used we would say that the 1-step incre-
ments of the constructed process exhibit negative global dependence. (For the analogous construction
of fractional Brownian motion see Cioczek-Georges and Mandelbrot (1994).)

We also point out that the path behavior of the pulse process is very irregular, contrary to previous
beliefs about the process introduced by Takenaka (1991). Sample paths of {X(t), t > 0} are nowhere
bounded with probability 1.

Finally we consider possible generalizations. One is in the same spirit as Takenaka’s generalization
of his Chentsov-type processes, i.e. the time parameter becomes multidimensional and rectangular
pulses change to multidimensional cylinders. In another generalization time is kept one-dimensional,
but the pulse shape becomes more complicated: it consists of several (falls or rises) separated by
random durations of time. For such processes self similarity and stationarity of increments still hold,
however the dependence structure is much more complex.

The idea of adding up pulses to construct self-similar stable processes was already investigated by
Lovejoy and Mandelbrot (1985) (see also Mandelbrot (1994)). They used a two-dimensional version
of a pulse process to model rain areas and rain rate. However, in their construction width and height
of pulses are dependent variables, and the resulting process is in the domain of attraction of stable
Lévy motion. Processes with independent pulse width and heights were considered for the first time
in Mandelbrot (1984) and this memorandum inspired the present paper. For a general introduction
to stable processes see the recent monograph of Samorodnitsky and Taqqu (1994).

We now turn to the case of up and down pulses. The pulse address space is defined as E =
Ro x R x R} where Ro = R\{0} and R4 = (0,00). Let £ = B be the Borel o-field on E. Consider a
Poisson random measure N on (E,£) with mean n given by

dA—e Ly~ 1d drdw  if A >0,
(1.1) n(dA,dr,dw) =
'[N~ tw=f=1dAdrdw if A <0,

forteR, weR,,andsome 0 < a<2, 0<0<1, e’ >0, +c >0.
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Each pulse is represented in E by a point with coordinates A, 7 and w, corresponding respectively
to the vertical amplitude (height), time of birth and width (duration) of a pulse. Hence, the random
measure N determines the number of pulses of given heights, widths and starting times.

The process X(t) at time ¢ > 0 is defined as the sum of the heights of all the pulses alive at time ¢
minus the sum of the heights of all the pulses alive at time 0. Thus, to get the value of X(t), we have
to add the heights of all pulses that started between 0 and ¢ and died after time ¢, and subtract the
sum of the heights of the pulses that started before 0 and died between 0 and £. Of course, both sums
could be negative because we assume that both positive and negative pulses (i.e. A > 0 or A < 0) can
occur. Note that the heights of pulses which started before 0 and died after ¢ do cancel and thus need
not be included in our summation. It is also clear that we can ignore the pulses that start and end
between 0 and ¢.

X(t), t > 0 is, in fact, an integral with respect to number of pulses. Its formal definition is as
follows:

Jrg T3 S M[w > t — 7]N(d, dr, dw)

= Jro o0 SO MI—T < w < t — TIN(dA, d7, dw) if0<a<l,
lime—o[fi_c e Jo Jo© Mlw >t = ]N(dX, dr, dw)

(= f(_e,c)c ono IO M- <w<t—=7]N(dA dr,dw)] if1<a<?2,

For consistency, we set X(0) = 0.

We must show that the above integrals converge. It turns out that, in the case 1 < a < 2, the
integrals over Ry converge only conditionally in the way specified by the above limit. Moreover, each
integral alone is divergent, even conditionally. Had we considered them separately we would need to
compensate the divergence around zero by subtracting some normalizing constants (e.g. in the case
1 < a < 2, it would be just the expected value of the respective integral over (—¢,¢)°). However,
in our case there is no need for such a normalization since the two integrals f(_w)c JJ2(...) and
f(—e,e)c fi)oo J5°(...) have the same distribution and the normalization constants cancel.

In subsequent sections we show that the above process {X (), t > 0} is well-defined, is a-stable,
has stationary increments and is self-similar with the exponent H = (1 — 8)/a. We also analyze
dependence structures, path properties and consider more general pulses.

2 Existence

Most of the properties of {X (¢), t > 0} as well as its existence follow from the theory of stable integrals
[z f(z)M(dz), where f is a non-random function and M is an a-stable random measure. Recall (cf.
Samorodnitsky and Taqqu (1994)) that if (E, £, m) is a o-finite measure space, and §: E — [-1,1]is a
measurable function, then an independently scattered o-additive set function M: & — L°() is called
an a-stable, 0 < a < 2, random measure on (E, &) with control measure m and skewness intensity
3, if for each A € £, M(A) is an o-stable random variable with the scale parameter (m(A))*/, the
shift parameter 0 and the skewness [, B(z)m(dz)/m(A). Using standard procedures it is possible to
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construct stable stochastic integrals (obtained as limits in probability of integrals of simple functions)
with respect to the measure M. A function f is integrable if it satisfies [ |f(z)|*m(dz) < oo for
0 < a < 2, and additionally, [z |f(z)(In|f(2)|)B(z)|m(dz) < oo for & = 1. The resulting stable
integral [ f(z)M(dz)is a stable random variable with the characteristic function

Eexp(it [ f(z)M(dz)) =
exp{— [z | f(2)|*(1 — if(z)sgnf(z) tan Z2)m(dz)}, if o # 1,
exp{~ [ |f(@)I(1 + i%ﬁ(z)sgnf(x)ln |[f(2))m(dz)} fa=1.

The following lemma relates the integrals with respect to a Poisson random measure to those with
respect to a stable measure. Its statement involves the constant

(2.1)

(2a71T(1 — @) cos(ma/2))~ 1/ if0<a<l,
(2.2) Ca=1 (=207 (a—1)""T(2 - a)cos(ra/2)) > ifl<a<?,
1/x ifa=1.

LEMMA 2.1 (cf. Theorem 3.12.1 of Samorodnitsky and Taqqu (1994)) Let M be an a-stable, 0 < a <
2, random measure on (E, £) with control measure m and skewness intensity 3. Assume m is o-finite
and E = U2, Ei, E; €& m(E)< oo and E;NE; =0, i #7, 4, =1,2,.... Let N be a Poisson
random measure on (Ro X F,B(Rg) X £) with intensity measure n given by
(14 BzNA">"tddm(du) A >0, ueE,
n(dA,du) = EN(dA,du) =
(1= B(z))|A|"* " 1dAm(du) if A <0, ueE.

Finally, let f be an integrable function. Then, if 0 < a < 1,

/E Fu)M(du) £ C, /R 0 [E M ()N (X, du);

fl<a<?2,
d L e .
/E Flu)M(dw) £ C, h_rggl [ /( o ] ()N (@, dw)~ /( o L A f(u)N(d)\,du)],
ifa=1,
. [, Fupa(aw)
d . ad -1
= Cy 11_1}(1); [/(_e’i)c/‘ Af(u)N(dA,du) — 2Inmax(1,e€ )/E. f(u)ﬂ(u)m(du)}
—9b/x [E F(w)B(w)m(du),

where b = Inm + [°(sint — tI[t < 1])t~2dt. The expressions in the right hand sides of the above
formulas converge a.s.



We are now able to infer the existence of the process.

THEOREM 2.1 The process {X(t), t > 0} given by (1.2) is well-defined and its finite-dimensional
distributions equal those of {C,Y(t), t > 0}, where

(2.3) Y(t):= M(S&,) — M(Sg,), t>0.

Here M is an a-stable random measure on (R x Ry, B(R x Ry)) with constant skewness 3 = (¢’ —
¢"V/(¢' + ¢") and control measure m given by

’ "
(2.4) m(dr, dw) = E—-—_;—S—w‘e‘ldrdw

forteR, w>0, and

il

Sg:t: {(ryw): 0<7<t, t—71<w}
So: = A(ru)r =00 <7 <0, —r<w<t—"T}

Hence, the finite-dimensional distributions of Y are a-stable. The one-dimensional distributions
are symmetric with scale parameter equal to ((¢' + ¢")o(1 - 8))~111-%)1/«. Moreover, the processes
are self-similar with the ezponent H = (1~ 6)/a and have stationary increments, under the additional
assumption § = 0 for a = 1.

REMARK 53: , involves the pulses whose time of birth is in (0,%) and whose death occurs after ¢
and S5, involves the pulses which start before time 0 and die in (0,1).

Proor: Consider first Y (t) = M(S¢;) — M(S5,) = Ca ka&(fl(r,w) — fo(m,w))M(dr,dw), where
fi and f, are the indicator functions of ng ; and Sg,, respectively. Since

/s+ m(dr,dw) = /Ot ti((c’+cll)/2)w‘9“ldrdw = /.Ooo /_:T((c'—{— ¢V /2w tdrdw

0.t

(2.5) = /S  m(dr, dw) = (¢ + ¢")(26(1 - 6)) 717 < oo,

{Y(t), t > 0} is a well-defined a-stable process, not necessarily symmetric. For fixed t > 0, how-
ever, M(5¢,) and M(Sg,) are independent and identically distributed random variables and there-
fore the one-dimensional distribution of Y (¢) is symmetric with the scale parameter ((c’ + ¢ )o@ -
9))~1t1=?)1/> By Lemma 2.1, the process {X(t), ¢ > 0} equals in distribution {Y(¢), t 2 0}. The
equality (2.5) explains why the compensating constants for X (), t > 0, are zero for a > 1. Moreover,
although m is only o-finite (not finite) the fact that, for every ¢, both functions fi and f; are supported
on m-finite sets (which again follows from the above formula) proves a.s. absolute convergence of each
Ji=eee [g Afi(r,w)N(dA,dr,dw), i = 1,2, separately, for a > 1, € > 0.

Using (2.1), the joint characteristic function of (¥3,,Ys,,.. LY, tiyte, .ty 20, m 2 1, for
a # 1, can be written as follows:

Eexa(i 0¥ () = expl= [ 130185 - 1185,DI"
j=1 X

o |
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x (1 - iﬂsgn(i 0;(1[S5,,) = 11S5;,])) tan %ﬂ)((c' +¢)/2)w™  drdw).

7=1
Note that, for a,t > 0,

S{{at ={(r,w):0<T<at, at -7 <w}={(r,w):0<1/a<t, t—7/a < w/a}

= {(ar’,aw):0 < 7' < t, t = 7' < w'} = a5,

and, similarly, g, = aSg,. Hence, using the change of variables 7":= 7/a, w':= w/a, we get for
a,t1,82, ..y tn 2 07 n2>1,

Eexp(i Y 6;Y (at;)) = Eexp(i y_ ;0" ~0/°Y (1)),
7=1 j=1

i.e.
{Y(at), t > 0} £ {a1=0/2Y (2), t > 0},

proving that {Y(t), ¢t > 0} is (1 — )/« -self-similar. The proof for o = 1 is analogous.
The stationarity of increments can be proved in a similar fashion. Fix b > 0 and t,1;,...,%, 2 0,
n > 1. Again, consider only a # 1. Then,

Bexp(i 320,715 45) = Y(6) = expl= [ |3 050085, 0] = 115D 7}

+ ;=1

x (1 ifsgn(3 8;(1[S,, 4] = 1[Sy,44]) tan -’523)((5 +")/2)w " drdw,

J=1
where
5;:0 = {(r,w):b<T<ec, c—1<w},
(2.6) S, = {(nw) —so<T<bb-T<w<e—7).

The simple translation, ':= 7 — b, shows that the above characteristic function equals that of
(Y(t1),Y(t2),...Y(tn)), i-e. that {Y(t), t > 0} has stationary increments. W

3 Symmetric case and an extension to a self-similar random field
with stationary increments

When 8 = 0, not only Y(t) is symmetric, but all its finite-dimensional distributions are symmetric as
well. In this case {Y(¢), t > 0} (and hence {X(t), t > 0}) is equivalent to a process introduced by
Takenaka (1991). To see this, we need to make the following change of variables: z: = T+w/2, ri= w/2.
Instead of defining a new a-stable measure as the corresponding map of the measure M in the definition
of {Y(t), t > 0}, it is more useful for our purposes to use the following change of variables lemma for
Poisson random measures and obtain yet another version of the process {X(t), t > 0}.



LEMMA 3.1 (cf. Resnick (1987)) Let ¢: E — E be a measurable mapping. If N is a Poisson random
measure on (E, &) with the intensity n, then N', defined by

N'(A):= N(¢7'(4))
for A € £ with n(¢~1(A)) < o0, is a Poisson random measure on (E,&) with the intensity n(¢~1(-)).

If we have a representation N = Y, 6x,, then also N'=No ¢t =3, 64(x;)- In particular,

[ 906 Nide) = [ a(u)N(dy),
$~1(A) A
whenever one of the sides is defined.

Let :Rox R x Ry — Rg X R X R be defined as

(3.1) (A, mw) = (A, 7+ w/2,w/2).

If N is a Poisson random measure with the intensity given by (1.1), then N':= N o ¢! is a Poisson

measure with the intensity

b \ma=1p=0=14) 2dr fA>0,
n'(dX, dz,dr) =
2-0c"|\|=e-1p=0=1dAdzdr if A <0,

for z € R and 7 > 0. The process {X'(t), ¢t > 0}, defined as the difference of integrals w.r.t. N’ in the
same way as {X(t), t > 0} in (1.2), but with w and 7 replaced by 27 and z —r (c.f. also (3.5) below),
is of course equivalent to {Y(t), ¢t > 0}. On the other hand, by Lemma 2.1,

(3.2) {X'(t), t > 0} £ const{M'(S5t) — M'(S57), t > 0}

where M’ is an a-stable measure on (R x R4, B(R x R4 )) with constant skewness 3 = (c'=c")/(c'+¢")
and control measure m', m/(dz,dr) = 27%"1(c' + ¢")r~%~1dzdr for z € R, r > 0, and

S&’; = {(z,r)ir>t—2z, 0<z—r <t} ={(zr):|z—t| <1, |2| >},
S(')"} = {(z,r)i—z<r<t—2z, z2—7r<0}={(z,r):|z=t| <, |2] >}

When 8 = 0, ie. ¢ = ¢ , M is symmetric and hence M'(+) < —M’(-). Moreover M'(S()*;J), Jj=
1,2,...,n, n > 1 are jointly independent from M'(S(')th), j=1,2,...,n, n > 1, since SOt NS, Otk =0
for all choices of t1,...,t,. Hence,

(M'(Sgh,) = M'(So3,), M'(55h,) = M'(Sg3,), - -» M'(Sof,) — M'(S4%,))
= (M'(Sgh,), M'(Sgh,), - .- M'(S5%,)) = (M'(55%,), M'(So,)s -+, M'(Soy,)

£ (M'(S55,), M'(S5%,), -+ M'(S5,)) + (M'(552,), M'(S53,); - - M'(553,)
= (M'(Sgh,) + M'(Sg3,)s - - M'(Sok,) + M(Sq7,))



= (M'(S5h, U So3,)5 - - M'(Sg%, U S,)-

Since, for t > 0,
S(','; U S(’):'t = {(z,r): |z = t| < r}A{(z,7):]z| < T},

where A denotes symmetric difference, we see, that in the symmetric case 8 = 0, the process {X(), t>
0} is a version of the process

(3.3) M(SH U S, t> 0} = {M'(SH) + M'(Sg3), t > 0}
0,t 0,t y ’

introduced by Takenaka. Relations (3.2) and (3.3) differ by the sign in their right hand sides. The
choice of sign plays no role in the symmetric case. In the non-symmetric case, however, it is essential
that the sign be “minus” (as in (3.2)), because otherwise the process would not have stationary
increments. Thus the pulses provide not only the physical construction of the process but they also
indicate what the correct sign ought to be.

There is a generalization of the above process to the situation where the time parameter is mul-
tidimensional. That is, we will construct a self-similar random field with stationary increments. In
the symmetric case such a random field was constructed by Takenaka. Our alternative construction,
besides being applicable to a non-symmetric case as well, allows us to view the resulting random fields
as superposition of multidimensional pulses.

Let M’ denote an a-stable measure on (R*x R, B(R%<R)) with constant skewness 3 and control
measure m', m/(dz, dr) = r~%4dzdr for z € R¢, r > 0. Then

(3.4) {M'(Sgh) — M'(Sgy), t € R4},
with
Sow = A(zm):llz—tll <rllzll >},

{(zr):llz—tll > 7 l2ll <7},

Il

f—
SO,t

is an a-stable (1 — #)/a self-similar process with stationary increments.

In the analogous definition of Takenaka there is, of course, a plus sign in (3.4) instead of a minus
sign. He interprets S!I)Tt U S(,)Tt as the set of all (d — 1)-dimensional spheres separating points 0 and t.
Variables z and r denote the center and the radius of a sphere, respectively. It seems that in order to
obtain a “proper” measure of the separating spheres (i.e. the one which also works in nonsymmetric
cases) one should subtract (not add) the measure of spheres containing zero from the measure of
spheres containing point t.

Now let us return to our original construction. The change of variables ¥ can be interpreted
in the following way. If (A, 7,w) is a pulse starting at time 7, with height A and duration w, then
z =T+ w/2 is the center of the pulse and 7 = w/2 its radius. These variables are particularly useful
in the R%-generalization. Note that (3.4) is equivalent in distribution (up to a multiplicative constant)



to {X'(t), t € R?} defined by
(o Jrafr, Mz = tll < llz]| > r]N(dA, dz, dr)
~ o S i, Mlllz 8l > 7zl < rIN'(d, dz,dr) if0<a<l,

(3.5)  X'(t)=
lim ol f_, o fraJr+ Mlllz =t <7 llzll > r]N'(dA, dz, dr)

~ fcerye JraJrs Mlllz = tl| > 7 ||z]] < r]N'(dX, dz, dr)] fl<a<?,

where N’ is a Poisson random measure on Ro x R? x R, with the intensity n'(dA,dz,dr) = (1 %
B)|A|=*=1dAm’(dz;dr) if £X > 0. The interpretation of X'(t), t > 0, as a sum of pulses still holds.
Now a pulse is a cylinder in R%+! space. It is described by its height ()), radius (r) and center of its
circular base (z). But the only pulses which really count are those whose bases contain either point O
or point t (but not both). To get X'(t) one adds the pulses containing t in their base and subtract
these that contain 0 in their base.

4 Dependence structure

It follows from the definition (2.3) (or (3.2)) of the process {Y(t), ¢ > 0} that its two-dimensional dis-
tributions determine its multidimensional structure. More precisely, given the definition of the process
as a difference of measures (or integrals) of the sets 5(’,’: ; and Sg ;s knowledge of all two-dimensional
distributions suffices to specify any multidimensional distribution; this fact does not depend on the
particular choice of m. To verify it, first notice that it is enough to know multidimensional distribu-
tions of nonoverlapping increments. On the other hand, these can be described using intersections of
at most two sets of the type Sb o She (cf. (2.6)) or their complements, and they, in turn, are specified
by two-dimensional characteristic functions. For the proof in the d-dimensional symmetric case look at
Sato’s paper (1991), where she shows that the finite-dimensional distributions of (3. 4) are determined
by (d + 1)-dimensional marginals.

We may conclude that the dependence structure of the (one-dimensional) process {Y(t), t > 0}
resembles that of Gaussian processes. To develop this point, we need to examine the characteristic
function of two nonoverlapping increments and compare their interrelation to the covariance in the
Gaussian case.

We will need the following general form of the characteristic function of an a-stable vector (X,Y):

Eexp(i(61X + &Y)) =

exp{— [s, €151 + &252]%(1 — @ sgn (€181 + £252) tan T2 )T'(ds)
+i(&p1 + E2p2)} if a #1,

exp{~ [, [é151 + &252|(1 + i% sgn (€152 + £252) In €151 + £252[)T(ds)
+i(E1p + Eap2)} ifa=1,

where the unique finite measure I' (called the spectral measure) is defined on Borel sets of the unit
circle S, and pq, g2 € R are the location parameters.
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Below we calculate the characteristic function of the vector (Y (s),Y(u) - Y(1)), 0 < s <t < u,
which is obviously equal to the one of (Y (s + h) — Y (h),Y(u+ h) — Y(t + h)) for any h > 0, because
{Y(t), t > 0} has stationary increments. (We assume 3 = 0 when a = 1, in order to ensure stationarity
of the increments in this case as well.) In order to obtain the characteristic function we partition the
sets Sg: 5190 5 S{t’u, St and consider independent variables

M(Sg,), M(SH,), M(S§, 0 57,), M(ST\SE.), M(S7.\SG ),
whose respective scale parameters satisfy (see (2.5)):

o*(M(S5,)) = (¢ +¢")(20(1-0)7"s'7,
)

o*(M(S1)) = (c+c)20(1-6)) " (u— t)‘ -
o (M(SE,NSm)) = (¢ +c)20(1-8) =0 — w0 — (1= )" + (u = 8)' 77,
o*(M(SF\ST)) = (¢ +c")(28(1 - 6))7"[s"~ t‘ e N () LY C'R) b
o (M(SZ\SE)) = (¢ +¢)(28(1 = 0)) M (w— )10 =170 4wl =0 4 (¢ — )0 = (u = 5)'~°].
Hence,

Eexp{i(&1Y (s) + &(Y (u) - Y (1))}
= Eexp{i(6iM(S$,\Si) — &M (Sg,) + &M (S,) — &M (S7,\55,)
(4.1) +(& — &)M (S5, N S}
exp{—(c' +¢')(20(1 - 9))7? (|51;°‘[251-9 0w (E - 8)0 = (u - 8)' )
(1- m[%l—a — 1m0 10 (t— 3)1'9 —(u— 5)1-—9]~1
[0 4 ul=f 4 (£ — 5)'% — (u— )1 7] sgn & tan —7126—1)
+ Gl — 1) =t (= 8)' T (u - 5)' ]
1—ifR2u—-t) =10 =0 (2 =)0 — (u— B
[0 -l — (1 =)' (u— $)17% sgn & tan %‘3)

F 16— &l — w1 = )"0 (u— 9))(1 - B sgn (6 - &) tan ) |
{ exp{— [s, [€151 + &252|*(1 — i sgn (€151 + £252) tan T(ds))} ifa#1,

exp{— [s, [§151 + &252|T'(ds)} ifa=1,
where

1+ﬂ

D= ()81 - ) [ = T2 — w0 = (= )"0 + (u= ) dr0)

S SR 910
T e (R (R LN CR0) o 0
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Now, one would like to describe the dependence structure between two increments using some
analogue of the autocorrelation function. Unfortunately, in the stable non-Gaussian case, there is no
single function which could play the role of the covariance. Indeed, it is the whole spectral measure
I" which gives the information about the interrelation between two variables. Nevertheless, there are
known measures of dependence such as the covariation and the codifference which partially replace
the covariance when 0 < a < 2.

Given two jointly a-stable variables X and Y with spectral measure I', the covariation of X and
Y equals

[X,Y]::/ 515527 >T(ds),
Sa

where a<#>: = |a|f sgn a for a,8 € R. One of the obvious flaws of the covariation is that it is not
symmetric in its arguments. Another is that it is generally not defined for a < 1.

Recently Kokoszka and Taqqu (1994) introduced the notion of codifference for jointly symmetric
a-stable variables X and Y. We extend their definition to the nonsymmetric case by considering a
symmetrization of the vector (X,Y), that is, the codifference of X and Y equals

7(X,Y):=Re In Eexp(i(X —Y)) — Re In Eexp(iX)— Re In Fexp(iY)

—/ Is1 — 52|*T(ds) +/ |s1|°T'(ds) +/ |52 |°T(ds).
S2 Sa S,
Note that in the Gaussian case (a = 2), we have
(X,Y) = 2[X,Y] = 2[Y, X] = cov (X, Y).
For the increments of process {Y (), t > 0} we get

T(Y(s),Y(u) = Y(2)) = (2°-2)[Y(s),Y(u)=Y(t)] = (2° = 2)[Y () - Y(t),Y(s)]
—(2* - 2)2“’/21’(\/‘ /2,-v2/2) + T(~V2/2,v2/2)]
= —(2°-2)(¢ + )01 - 9) P — T = (= 8) 0 4 (u—8)' ).

Before interpreting this result, note that in our case the spectral measure I' has exceptionally
simple form. It is clear that the dependence between Y (s) and Y (u) — Y (¢) is due to the mass I
gives to the points +(1/2/2, —v/2/2). Hence, any function pretending to extend the covariance must
make use of mass of I' concentrated at these points. Equivalently, one may want to keep in mind the
following unique (up to the equality in distribution) representation of the increments (cf. (4.1))

(Y(s),Y(u) = Y(tu)) £ (U + V, Uz = V),

11



where Uy, U, and V are independent a-stable variables with V, the random variable which affects the
dependence, having skewness 3 and the a-th power of its scale parameter equal to

(¢ +¢)(20(1 — 0)) (10 = w0 — (t = )'0 4 (u—5)'7?).

Then we are able to define a measure of dependence between Y (s) and Y (u) — Y (%) as the a-th power
of the scale parameter of the “common” variable V. To get an analogue of the correlation let us
normalize it by the product of the scale parameters of the increments raised to the power a/2, i.e. let
us consider the function

t1—0 _ ul—@ _ (t _ 8)1—-0 + (,u _ 3)1—6

We put the minus sign to underline the negative dependence of the two increments. Hence, for
1 < @ < 2,! the normalized covariation (i.e., divided by ([Y(s),Y(s)][Y(u) - Y (2),Y (u) — Y ()2 =
(a%(Y(5))o*(Y (u) — Y (£)))/?) equals exactly r(s,t,u). Also the codifference 7(Y(s),Y(u) — Y (1)),
for a # 1, properly normalized, equals r(s,t,u). For 0 < a < 1, on the other hand, it seems here
that r(s,t,u) measures dependence in a more proper way than the codifference. For a = 1, the

r(s,t,u)=—

codifference becomes zero, although the increments are far from being independent, and for 0 < @ < 1
the codifference is positive (2% — 2 < 0).

We should remark that all preceding normalized measures of dependence equal the correlation
of the respective increments of the fractional Brownian motion with the self-similar exponent H' =
Ha/2 = (1~ 6)/2 (cf. Mandelbrot, Van Ness(1968)). For example, the measure of dependence r for
1-step increments, k steps apart, takes a very well-known form

r(Lkk+1) = ((k+ D70+ (k- 110 = 2k17%)/2.

In the case H' = (1-6)/2 < 1/2,ie. H = (1 —8)/a < 1/a, the dependence of the increments
of fractional Brownian motion is antipersistent and we extend this terminology to the dependence
structure of process {Y(t), t > 0}. Note that our construction does not allow for H' > 1/2 (H > 1/e)
which corresponds to persistent (or positive) long-run dependence.

Clearly, it is the special nature of the process {Y(t), ¢ > 0} which allows the above measures
of dependence to coincide. For most processes r(s,t,u) cannot be even defined. However, whenever
the representation X (t) = [, M(du) = M(A;), t € T, holds for some M, then a “good” measure of
dependence between X(#;) and X(t;) (or even X(¢1), X(t2),...,X(5)) should be

/ m(dt) = m(Ay, N Ay,)
Atl ﬂAtz

(or m((i; A¢;)) properly normalized.

1One could also consider & = 1 with a<°> = sgn a. The covariation is not defined here for o < 1.
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5 More general processes

Let 0 < a < 2, and let F:R*¥ — R, be a function satisfying two following relations:
(5.1) F(czy,czq,. .. cxk) = ¢~ (1+9) F(zy,zq,...,%k)

for ¢ > 0, z1,29,...,2r € R, and fixed § € R, and

(5.2) F(zy+t,m0+t,...,2p + 1) = F(z1,22,...,%k)

for t,z1,29,...,21 € R.
Let N be a Poisson random measure on (Ro x R¥, B(Ro x R¥)) with intensity

n(dA, dzy,...,dz,) = N7 F(zy,...,z1)dAdz . . . dag

for A #0, z1,...,2¢ € R. Put Z(0) = 0 and

k
(5.3) Z(t)::/ /kz\Zail[0<miSt]N(d/\,dzl,...,dmk)
Ro/R® i

fort > 0, wherea; ¢ R, i = 1,2,...,k.
The integral in (5.3) is well-defined for every t > 0 (possibly only in the sense of conditional
convergence if a > 1) if

k
(5.4) /k S @I[0 < 25 < H°F (21, ...y 2a)dey .. doy < 00
R =1
for every ¢ > 0. In this case {Z(t), t > 0} is a symrhetric a-stable process, 2 which, up to a
multiplicative constant, has the same finite-dimensional distributions as

(5.5) Z’(t) = /Rkiail[o < z; < t|M(dzy,.. .,dz),

where M is a SaS random measure on (R, B(R¥)) with control measure m(dzi,...,dzn) =
F(z1,...,2,)dz,...dz,.

It is easy to check that, under conditions (5.1), (5.2) and (5.4), {Z'(t), t > 0} (hence also {Z(2), t >
0}) is (k — 1 — 0)/a-self-similar and has stationary increments.

When k = 1, any function F satisfying (5.1) and (5.2) must be constant and the process {Z(t), ¢ >
0} is, in fact, a-stable Lévy motion (with independent increments).

When k = 2, F(z1,z3) = |29 — 21]"17? F(0,sgn(z2 — 1)) and if at least one of F(0,1), F(0,-1)
is positive, then (5.4) implies

00 > / / la 1[0 < z1 < t] + a2l[0 < 29 < t]|%(z2 — :1:1)"1"9[{:172 > z1|dzqidz,
RJR

2We could consider Poisson measure N with nonsymmetric intensity n. Then (5.3) may require compensating for
Z(t) in order to converge. The measure M and process {Z(t), t > 0} would be, in general, nonsymmetric.
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= / / la 1[0 < 7 < 1] + agl[—7 < w < t — 7]|*w ™ " I[w > 0]drdw.
RJR

The above inequality holds only when a; + a; = 0 and 0 < § < 1. We recognize that in the latter
case the process {Z(t), t > 0} is equivalent (up to a multiplicative constant) to processes obtained
in the previous sections, in particular to {X(¢), t > 0} given by (1.2). The variables z; and z; have
simple interpretation as the moment of pulse birth (i.e. 7) and the moment of pulse death (i.e. 7+ w),
respectively, if z9 > zy, and vice versa if 3 > 2.

The following example shows that there is an F with properties (5.1) and (5.2) in the case k = 3.
It can be easily extended to k > 3. Let
T3 — T

1
2 < —] I[zq < 73 < 23],

(56) F(xl, 1‘2,1133) = (11)2 - (1)1)_91_1(333 - 192)_62.-1[ [61 <
T2 — Ty €2

where 1/€; > €; > 0. Then, if a; # 0, 4 = 1,2, 3, it is necessary (and sufficient, too) that 0 < 61 +602 < 1
and a; + ay + az = 0 for (5.4) to hold. We may still interpret Z(t), ¢t > 0, as the difference in the
total magnitude of pulses existing at time ¢ and at time 0, but now the shape of a pulse is different.
It consists of three, or in general k, jumps with the last one equal to the negative of the sum of all
previous jumps (ax = —(ay + ...+ ag—1)). The i-th jump occurs at time z; and at this time the
height of the pulse changes by Aa;. The resulting height (i.e. A Zj._:l a;j) is maintained for a period of
time w; = z;41 — z; > 0. Note that we cannot take the variables w;’s independent and distributed as
w; %=1 dw; with 8; > 0, since the convolution of every two such measures would be infinite and so would
be the width of a pulse. (This explains the presence of the indicator I[e; < (z3—22)/(z2 —21) < 1/€2]
in the above definition of F.) On the other hand, keeping the z;’s in increasing order is just a useful
simplification. It should be clear from (5.3), or from (5.5), that integrals over regions with different
orderings of z;’s give independent contributions to Z(t). In the geometric interpretation, these integrals
correspond to adding pulses of various shapes with k jumps whose size is proportional to the same k
numbers a;’s, but the jumps occur in different order. Because such sums of pulses are independent
and have a similar structure we shall focus on one particular order of a;’s or z;’s.

Let us also notice that a;’s (or rather their ratios) determine the dependence structure of multidi-
mensional distributions of {Z(t), ¢t > 0}, i.e. they determine points on the multidimensional sphere
where the spectral measure lives. Both F and a;’s determine the mass at these points. Since k£ jumps
may affect at most k different disjoint increments of Z(t) and the a;’s are fixed, knowledge of all
k-dimensional distributions of {Z(t), t > 0} suffices to describe this process (refer to the discussion
at the beginning of Section 4 for k¥ = 2). Moreover, in the case £ > 3, when Ele a; = 0, two kinds
of dependence between two nonoverlapping increments appear—positive, corresponding to pulses ei-
ther increasing or decreasing in both time intervals, and negative when the opposite is true. For
k = 2 (a; = —ay) we have only negative dependence (see Section 4).

No matter how big k is, however, the dependence structure of multidimensional distributions of
{Z(t), t > 0} is simple in the sense that the corresponding spectral measures are discrete. If we
randomize a;’s we may obtain nondiscrete spectral measures. Then the integral (5.5) will no longer be
a linear combination of random measure of some sets. However, the interpretation of Z(¢) as a sum
of pulses becomes less clear since the shape of the pulses is not fixed, but is a function itself. As an
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example, for k = 3, consider

Z(t) = /RO/I@ OzwA{SiDQﬁ(I[O( zy <t]-I[0<z3< )

+ cos (1[0 < 2 < 1] = I[0 < z3 < t]))}N(dA, dxy, dzo, dzs, dd),
where the Poisson measure N on (R x R® x [0,27), B(Ro x R? x [0,27)) has intensity

Tl,(d)\, diI)l, dCEQ, divg, qu) = ]/\l—a‘.lF(l‘l, zo, $3)d/\d(l)1d$2d$3d¢

with F as in (5.6). Each pulse consists of jumps of height Asin¢, Acos¢ and —A(sin ¢ + cos ¢).
Summing pulses, also over ¢, indeed, gives a continuous component of spectral measures for two-
dimensional distributions.

6 Remark on sample path behavior

The sample path behavior of the original process (1.2), or equivalently its version (2.3), is very irregular.
We will show that sample paths are nowhere bounded which contradicts the statement made by Koéno
and Maejima (1991) about the Takenaka process.

We will use the following facts (c.f. Samorodnitsky, Tagqu (1994), Corollary 9.5.5 and Theorem
10.2.3). A stable process is sample bounded with positive probability iff it is sample bounded with
probaility 1. Moreover, if an a-stable process with an integral representation {[g ft,u)M(du), t € T}
is sample bounded then, necessarily,

sup sup | f(t,u)|*m(du) < oo,
T*cTJE
where T* is any countable subset of T'.
Consider process {Y(t), ¢t > 0} given by (2.3). We will prove that

(6.1) /] sup I[Sg Jw™?"drdw = oo
Ry teT*
for T* = Q N I, where Q is the set of rational numbers and I is a finite interval in (0, 00). Hence,
{Y(t), t > 0} is unbounded on every finite interval, i.e. nowhere bounded, with probability 1.
To establish (6.1) consider the indicator I[Sg]=I[0 <7 <%, t -7 < w] as a function of ¢ with
fixed 7 and w. Then I[Sg o4 = 1iff T <t<w+7. Fixan interval I and note that for any (7,w), 7 € I
and w > 0, there exists tg € 7™ = @ N [ such that 7 < 1o < 7+ w. Thus,

// sup I[S5 Jw —9'1d7‘dw2/ sup I[S¢ Jw ~-Ydrdw
Ry teT* IxRy4 teT*

= / w™ ' Y drdw = .
IxR4
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Similar reasoning proves that also the process {Z’(t), t > 0} defined by (5.5) with £ = 3 and F
given by (5.6) is nowhere bounded with probability 1. In this case the statement follows, for example,
from the fact that

/ sup |a1I[0 < z1 < t < 22 < z3)|*F (21,2, 73)dT1dT2dT3
R3 teT*

- w 1
]a1|°‘// / sup [[0 <7<t < T+w <7+ ww el"lw;(b 'r [el <2< ——} drdwydw,
R4y JR4 teT* w1y €2

> laﬂa// w'"&l‘l 92"11 [61 < 12 < L] drdwidw, = oo.
R4 wi €2
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