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ABSTRACT

This paper deals with a curtailed sequential procedure for selecting a
random size subset that contains the multinomial cell which has the largest
cell probability. The proposed procedure R always selects the same subset
as does the corresponding fixed-sample-size procedure, and thus achieves the
same probability of a correct selection. But the sequential procedure
accomplishes this with a smaller expected number of vector-observations than
required by the fixed-sample-size procedure. Exact formulae for the savings

are given as well as numerical calculations based on these formulae.



1. INTRODUCTION

This paper considers a closed sequential procedure for selecting a random
size subset that contains the multinomial cell which has the largest cell
probability. Multinomial selection problems have customarily been treated
using two different approaches, namely, the indifference-zone approach and the
subset approach. Bechhofer, Elmaghraby and Morse (1959), adopting the
indifference-zone approach, proposed a fixed-sample-size procedure for
selecting the multinomial cell which has the largest cell probability. Gupta
and Nagel (1967), adopting the subset selection approach, proposed a fixed-
sample-size procedure for selecting a random size subset that contains the
multinomial cell which has the largest cell probability. Inverse sampling
sequential procedures for these two approaches were studied by Cacoullos and
Sobel (1966) and Panchapakesan (1971), respectively. Other sequential
procedures which employ the indifference-zone approach for multinomial
selection problems were given by Bechhofer, Kiefer and Sobel (1968), Ramey and
Alam (1979) (see also Bechhofer and Goldsman (1985a)) and Bechhofer and
Goldsman (1985b, 1986).

Bechhofer and Kulkarni (1984) considered a closed sequential procedure in
which curtailment was applied to a generalized version of the selection goal
of Bechhofer, Elmaghraby and Morse (1959). Both procedures were proved to

achieve the same probability of a correct selection, uniformly in the unknown



cell probabilities p = (pl’ Pgy oo pk). The procedure of Bechhofer and
Kulkarni always requires a smaller expected number of vector—dbservations to
terminate sampling than required by the corresponding fixed-sample-size
procedure of Bechhofer, Elmaghraby and Morse. Bechhofer and Goldsman (1985b,
1986) studied the performance of truncated versions of an open sequential
sampling procedure proposed by Bechhofer, Kiefer and Sobel (1968) which also
employ the indifference-zone approach. Thus far no article has been published
dealing with a closed sequential procedure for the random subset selection
approach. Motivated by the use of curtailment by Bechhofer and Kulkarni, we
consider a closed curtailed sequential version (R) of the Gupta and Nagel
(1967) fixed-sample-size procedure. We show that R always selects the same
subset as does the Gupta-Nagel procedure, and hence achieves the same
probability of a correct selection. But R accomplishes this with a smaller
expected number of vector-observations than required by Gupta-Nagel.

The procedure R is defined formally in Section 2. In Section 3, we
investigate some properties of the probability of a correct solution (P{CS|R})
and the expected size of the selected subset (E{S|R}). In Section 4, we give
the formulae for the expected number of vector-observations (E{N|{R}) to
terminate sampling for k = 2 and 3 cells. These formulae can be generalized
to larger k wusing a similar method. In Section 5, we provide a table of

E{(N|R} for the so-called slippage configuration of the cell probabilities ,



and explain how it was computed.

2.‘ THE SELECTION GOAL AND THE PROPOSED PROCEDURE

A multinomial distribution with k cells Ty Moy weey e is given;

let the ordered values of the unknown cell probabilities p; >0 (1 <i=2k)

k
with ‘E

iz

IA

=z 1 be denoted by P[1] P[2] < ...5 P[k]’ and the corres-

p P
ponding cells be denoted by (1) Tg)r e (k) It is assumed that the
values of the py and P[5] (1 €£1i, j € k) are unknown, and the pairings of
the =, with the ppj) are completely unknown. The goal of the experimenter
is to select a random size subset containing the cell (k) A correct sel-
ection (CS) is defined as the selection of any subset of the k cells which
contains the cell k) 1f more than one cell has a p-value equal to Plk]’
then one of the cells with the largest value is considered "tagged,” and the
selection is correct if this "tagged” cell is in the selected subset. Let p*
with 1/k < P® < 1 denote a specified constant. We require a procedure R
which guarantees that for all p = (pl, Pos -1 pk) we have

»*

P(CS|R) = P". (2.1)
The procedure R takes vector-observations one-at-a-time until a certain
stopping requirement 1is satisfied. Let n denote the largest number of

vector-observations that the experimenters will be allowed to take. (This n

is the same as the N of Gupta-Nagel; we have changed notation since our N



of Section 4 is a random variable.) The value of n may have been based on
economic considerations. By stage m (m < n), we shall mean that a total of m
vector-observations have already been taken. Let the random variable Zi,m (1
< i<k, 1 <m¢<n) denote the frequency in cell m, through stage m, and let
D be a predetermined non-negative integer. For given (k, n, D} we now state

the curtailed procedure (R) which guarantees the probability requirement

(2.1},

Procedure R:

Sampling Rule: Take vector-observations one-at-a~-time.

Stopping Rule: Stop sampling at the first stage m at which there

exists a cell Ty such that

Z m > Zj,m +n-m+D forall j#i (i,J = 1,2, ..., K). (2.2)

Selection Rule: Having stopped, include in the selected subset

the cell Ty with observed frequency Zi m if and only if
3
. > - -
zl,m - Zmax,m D (2.3)
where Zmax,m = max(zl’m, Zy mr ot Zk,m)’

Note: For given (k, P*, n) values of D are tabled by Gupta and Nagel so
that their fixed-sample-size procedure will guarantee (2.1).

Tt is clear from the above definition of Procedure R, that only the
cell with the maximum frequency is selected when the sampling is stopped at

stage m < n. When the sampling is stopped at stage n, the selection rule



(2.3) will be used to select a subset that contains one or more cells.

3. AN IMPORTANT PROPERTY OF PROCEDURE R

Procedure R possesses an important property relative to the corres-
ponding fixed-sample-size procedure Rgy of Gupta and Nagel. Using the same
notation as we used in defining procedure R in Section 2, we now state the

procedure Ryt

Procedure RGN: A total of n vector-observations is taken in a single

stage. Include in the selected subset the cell s

with the observed frequency z; . if and only if
’

Zi,n 2 Zpax,n D (3.1)

where Zoax n and D are defined as in (2.3).
3

We now state and prove the following result concerning the relation

between the performance characteristics of procedures R and  Rqy-

Theorem 3.1: For given (k,n) both R and RGN select the same subset of the

k cells if both use the same D. This result is uniform in (py, Pg, ceo )

Proof. The selection rule (2.3) is identical to (3.1) when m = n. Thus the
same decision will be made by R and RGN with any sampling outcomes that
takes a total of n observations. Hence we need only consider the situation

when the sampling with R 1is stopped at stage m < n. When this happens, we



have n - m > 0. Let Z'i,m denote the frequency associated with the cell
which at termination has the largest’ frequency.
zj,m+n—m < z'i,m - D for all Jj#i (i,j = 1,2, ..., k) (3.2)

Here (n-m) is the maximum total number of vector-observations that can be
taken to complete the experiment. Thus even if the sampling was terminated
before a total of n observations was taken, the same decision of selecting
the same one cell my will be made since

Zj,n < zj,m + (n-m) < z'; -D < z. - D for all J# i, {(3.3)
Thus the same decision will be made using R or RGN‘ As a consequence,

P(CS|R) = P(CS!RGN) and E(S|R) = E(SIRGN) uniformly in

R = P,y Pyr =evs Pple

Remark 3.1: The result of the above theorem is analogous to the corresponding
result obtained by Bechhofer and Kulkarni (1984) concerning multinomial
selection problems using the indifference-zone approach. However, our proof
is much simpler than theirs since we use a strict inequality (>) in (2.2).

The strict inequality in (2.2) leads to the same decision for both procedures
R and RGN‘ Theorem 3.1 is not true if a weak inequality (z) is used in (2.2)

to replace the strict inequality.

Remark 3.2: As a consequence of Theorem 3.1, the configuration of the pi(l <

i € k) that minimizes P(CS) is the same for both procedures R and RGN’



uniformly in n and k. It was shown in Gupta and Nagel (1967) that this
configuration is of the form

(0, 0, +.., 0, 8, P, +++P)y, S P (3.4)
Thus the global minimum can be found by solving

min P(CS|k, n, D; p) = min [ min P(CS|(0, «..y O, s, Py +vy p))}
P 2<r<k Lot
r-P=r-1

where r is the number of positive p's in (3.4) and s = 1-(r-1)p. As
pointed out in Gupta and Nagel, the minimum usually takes place at one end of
the p-interval in question, i.e., for p = 1/r or for p = 1/{(r - 1). When we
used our computing program to prepare our Table I of E(N|R) for k = 2(1)8
and n = 5(1)20, we found that the only case for which the minimum was attained
in the interior of the p-interval occurs when k = 3, n = 6 and D = 4, which

is the same case as was noted by Gupta and Nagel.

4. FORMULAE FOR E(N|R) : k = 2 AND 3

Let N denote the random number of vector-cbservations to terminate
sampling using k. We now derive formulae for E(N|R) for the cases k = 2,
D=0 and 1 and a general formula for k = 3.

For k=2,D=20:

Let B(x|n,p) = (2) (1 - P denote the binomial probability.

When n is odd,

n
E(NIR) = 3 i - [p, BUGHA -1, py) p B(UZHi - 1, p)l. (4.1a)



When n 1is even,

i[PiB(SIi -1, p,) + sz(gii -1, p)l + nB(Z|n, p ). (4.1b)

nti

I AN - r‘l' 3 Q.:_t_j.-. 1 M0 0
E{N|R) = P ilp, B(*2*11 - 1, p,) + pBY; li -1, p,)]
i=Btiy
2
+ n(B(E2n, p) + B0, p,)l. (4.22)
When n 1s even,
n . n . oon -
E(N|[R) = 2 ilp, B(ZIi - 1, p) *+ P, B(;li -1, p)]
._n
1_2+1
+ nB(5|n,p, ). (4.2b)

For k = 3 or larger, we do not have a simple formula for E(NIR) similar to
the ones in (4.1) and (4.2) for the case k = 2. However, E(N{R) for k = 3

can be expressed in the following manner:

N X X X .
E(N|R, kK = 3) = (x E oy X cx(xi,xa,xg) P, t P, 2 P, 2, (4.3)
17727

The expression is quite easy to evaluate using a computing algorithm, and can

be generalized to any k without any difficulty. Here T ig taken over all

(xl,x ’Xa) such that

2

1M
Pt

v. = x < n. The coefficient c_(x ,x_,x,) is a
i i pr O R LT !

function of non-negative integers Xy Xy and X, defined as follows:

o (%, X)) = Gulx ,x,,x ) = G ((x, - 1, x,,x ) = G, x,x, = 1hxg)

3 X~-1 3

= Gy (XXX, - 1)
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where
4% X! 3 R - > —
y Xl!xz!xs, if x = n and X[3] 2 n X12] + D
GX<x1,x2,x3) = or x <n and X3] >n - X121 + D (4.4)
0 otherwise.

Here X3 Z X[2] z X[y are the ordered values of the observed frequencies
1

and x_ .

Xy Ko 3

Examples: Let (g) denote the binomial coefficient, and

(43
(04 [e3 ...(X-)
i 2 1

denote the multinomial coefficient. For n = 5, D=0, k = 3, we have

ENIR) = 3(2) (p,° + p,% + p,°)
3, .
+ 4y (paspx * p23p1 ¥ p13p2 * p33p2 * p23p3 * plgps)
= 4
+ 50211 (p33p1p2 * pzapips * p13p2p3)
= 4
* Slgp) (p33p22 * p33p12 * p23p32 * p23p12 * p13p22 * p13p32)

=, D
+ D<221) (pazpzzpi + p32p2p12 * pzzpizps)'

ea}
Z.
:;j.
t
e
<
o]
"
"
o+
ko]
1M
'S
+
e
()

cody g 4 4 + + +
+5(1) Py Py * P3Py * P, P, PPy TP P P, pPy)

- D 4 4 4
+ 0(311) (pa PPy + Py P3Py t Py p1p3)
5
+ 5(2) (p33p22 + p33p12 + p23p12 + p23p32 + pispsz t p13p22)

_. 5
+ 5(o0q) (p%p%p, + p,%p,p, % + PP, 7P,) -

5. TABLES AND REMARKS

To compare the expected number of vector-observations of procedure R



-11-

relative to that of n of the competing procedure Rqy We present in Table
1 the numerical values of E(N|R) under the so called slippage configuration
(Py Py~ AD) for k = 2(1)8; n = 5(1)15; D = 0,1,2; and A = 1,3,5., TIrom
Theorem 3.1, P(CS|R) and E(S|R) are the same for both R and RGN' These
later quantities are tabled in Gupta-Nagel for the same {(k, n, A, D)-values.
Based on the table, we can draw the following conclusions concerning the

saving n - E(N) 1in the expected sample size:

Remark 5.1: For fixed (n, k, D), the saving increases with increasing A,
when A approches =, the configuration p approaches (0, 0, 0, ...y 1),
The expected sample size for any (n, k, D) is then

1)

(93]

ENNlp = (0, 0, 0, ..., 1y = | B2} (
where {a]+ is the smallest integer greater than a. The saving in this case
is

n - E(Np = (0, 0, 0, ..., D} = | 257E | (5.2)

Remark 5.2: For fixed (n, A, D), the saving decreases with increasing k.
For fixed (k, A, D), the saving increases with increasing n for n either

odd or even.

Remark 5.3: Panchapakesan (1971) does not calculate E(N)-values for his
procedure although he does give a formula for E(N). He points out that he

does not provide a theoretical or numerical comparison of n for the



Gupta-Nagel procedure and E(N) for his procedure becausé it is difficult to
equate the P(CS) for the two procedures. The same is, of course, true for
our procedure since ours achieves the same P(CS) as does the Gupta-Nagel
procedure. We conjecture that if the P(CS) for the Panchapakesan procedure
and our procedure were equated, ours would have the smaller E(N), at least
for k moderately large and P* and A close to unity.
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TABLE I

THE FXPECTED SAMPLE SIZE E(N) IFFOR PROCEDURE R

2 3 4 6 6 7 8

_4.125 4.555  4.734 4.824 - 4.875 4,907  4.928

w

821 5.859  5.887

15,500 5.530 __ 5.688 5.766

7.539 8.342 8.535 8.678 8.752 8.790 _8.815

9,047 9,309 9,501 _9.621 _ 9.714 _9.772 _9.808

111,087 12,110 12,358 12.531 12,616 12,676 12.725

116,291 16.805 17.167 17.369  17.486 17.573 17.642

JdeBrh

4| 13.495.13.759__13.892 12,947 13.960 _13.974 14.982

112.648 13,009 13.327 13.493 13.597 13.658 13.703

114,662 15.243 16.197 16.396_ 16.510 16.598 16,667

'

z 3 4 5 G 7 o

4,963  4.931

4,992 4,905 1.997 4,002

JD.E00 5.827  5.922  5.958  5.975  D.U%I 0.000

& 8,705 8,801 8.9J1 8.933 8.948 H.950

0.928 _9.910  9.800

_9.81e

9,899 —

9 12.953

12.746__12.828 12,876 12.90
13.702 13,814 13.864 13,806 13,821

16,749 16.624  16.869 10,898 _

116,290 17.311 17.592 17.731 17.805_17.857 17.891

)
[
3
o
-3
o

JAL8TH 4960 .98 4,992 4.995 4.997 4.998

5.988 . 5.987  5.99G_ 5,998  5.999 6.000  6.000

3.565 8.916  8.956 8.974 8.984 8.990 8.893

{.9.731 9.864  9.952  9.973 9.982  9.988 9.992
112,299 12.781 12.903 12,944 12,967 12.980 12,987

16,920 16.670 16,839 16,906 1G.914 16.962 106.973

17.251  17.653  17.826 17.896 17.935 17.958 17.972_



4,654  4.750

475 5.596  5.684

8.234 _8.412

ALLE63 138,667

A3z 14.421

9,110 9.308_
610016 11.276 11,693 11.971
_ 12,545 12,855 19

14,000 15,080 15,474 15,

}

15.918 165438

A

0.748 8,793

H.450

12,166

16,652

_ALBLG 4,856

"
[y

. 8.530 8.010

g,

3
L.«

10978

_ 16,835

2 3

‘.--)80_ __1;,8()'[* Lt .'_*\ :

5.846_ 5.904

10514 11.280 11,9

410,588 12,040 1

6,643 8.747

) 12.205 12.426 12,

13.061 . 13.335 13.5

8 15,674
€1 _16.530 16,908 17.171  17.37

[ RS R

SALTOL 0.6

16.02]

F‘.(}O.’—' i (}(}f) "

636 0,808 #.900

462000 16,430



A=5, D=0
k
n 2 3 4 5 6 8
51 3.532 3.932 4.210 _4.403  4.539 4,637 4.709
61 4.710 5,017 5.213 5.358 5.471 5.560 _ 5.631
91 5.980 6.796 7.284 7.623 1.872 8.069 8.202
10 _7.176  7.671 8.098 8.429 8.689 8.896 __ 9.060
13| 8.394 9.509 10.162 10,643 11.013 11.305 11,541
141 9.593 10.268 10.900 11.394 11.788 12.105 12.362
17 110.798 12.157 12.958 13.574 14.062 14.460 14.788
18 111.998 12.856  13.667 14.302 14.817 15.239 15.591
A=5b6,D=1
k
n 2 3 4 5 6 8
51 4.517 4.739 _ 4.847  4.904 4.937 4,957 4.969
64710 6177 5.462 5.637  5.747 5.819  5.8067
91 5.980  6.796  7.284 7.623 _ 7.872 8.009 8.202
10 | 7.176 8,096  8.607 8,950 9.192 9.466  9.493
_12.8.581. 10,239 10.834 11,281 31.621 11.88% 12.086_
C)9.8593 10,806 11,508 12,022 12,405 12,089 12.929
L 17.111.995 12,816 13,640 14,249 14.730 15.114 15.422
18.111.998  13.460 14,318 14,977 15.403 15.905 16,240
A=5,D=2
I
n 2 3 4 5 6 8
651 4.517 4,739 4.847 4.904 _ 4.937 4.957 1.970
61 5.598 65.814 5.904 5,947 5.969 5.980 5.987
91 7.130 _7.918 8.314 8.535 8.672 8.762 8,824
101 8.291 8,772 9.154 9.409 9.574 9.685 9.762
13 | 9.581 10,748 11.381 11.807 12.106 12.322 12.48]
14 110.771 11.495 12,136 12.596 12.931 13.176 13.360
17 111.995 13.437_ 14.2061 14.871 15.328 15.077 15.9456
18 113.192 14.126  14.979 15.619 16.112 16.493 16.790

~15-
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