Tactic-Based Theorem Proving and
Knowledge-Based Forward Chaining:
An Experiment with Nuprl and Ontic

Wilfred Z. Chen*

TR 92-1276
March 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*The author would like to acknowledge support for this work under grant CCR-
9108062 and ONR grant NOOOO14-88K-0409.

Tactic-based Theorem Proving and
Knowledge-based Forward Chaining:
an Experiment with Nuprl and Ontic

Wilfred Z. Chen*

Department of Computer Science
Cornell University
Ithaca, NY 14853 USA
chen@cs.cornell.edu

Abstract. We explore a new approach to interactive theorem proving which
combines a knowledge-based notion of obvious reasoning with a tactic-based
notion of obvious reasoning. We study the interplay of two particular systems
and apply our approach to a proof of the Fundamental Theorem of Arith-
metic. We achieve both shorter and more robust proofs. It is our opinion
that the kind of control information contained in interactive proofs is a more
important issue than their mere size. We analyze our proof scripts in terms
of the control information they contain and suggest that stronger knowledge-
based notions of obviousness and declarative representations of tactics are
needed to further reduce low-level control information.

1 Introduction

Tactic-based theorem proving has received a lot of attention lately [16, 10, 15, 14, 31].
Forward chaining theorem proving has also been studied [9, 22]. In this paper, we
explore the potential for combining these two approaches. In particular, we study
the combination of Nuprl and Ontic.

The motivation for studying the combination of these two different approaches
is the hope that their strengths and weaknesses will compensate each other and
produce proofs that are both shorter and more robust.

Although the current collection of tactics in Nuprl has provided indispensable
assistance in developing proofs [17, 26, 2], these tactics are often sensitive to minor
variations in the formulation of the problem, to changes in the lemma library and to
improvements in some standard tactics — the Autotactic, for example. This problem
is acute — strengthening a tactic or the lemma collection can damage previously
checked proof scripts. It is also general — other LCF descendants, such as HOL,
suffer similarly: providing low-level control information to the system is not only
extremely tedious, it also makes proofs harder to reuse. By applying knowledge in
the form of a large lemma collection, we hope to reduce the amount of detail.

In contrast, Ontic proof scripts replay under any strengthening of the lemma
collection, modulo practical feasibility considerations. But there is no mechanism to

* The author would like to acknowledge support for this work under NSF grant CCR-
9108062 and ONR grant N000014-88K-0409.

encode simple patterns of inference, so similar subproofs are duplicated. So we hope
to find regular patterns of inferences — clichés — that might be captured using tactics.

We expect fruitful cooperation between the tactic-style theorem proving and
the forward chaining technique because the former is suitable for capturing and
combining dynamic patterns in inferences while the latter does the same to static
patterns, in the form of lemmas. Both forms of knowledge are necessary in problem
solving.

How are these (dynamic) patterns discovered? Our first step is to implement a
knowledge-based forward chaining autotactic and gain some experience by applying
it to compress some known proofs in Nuprl.

This paper contains an introduction to the main ideas of the knowledge-intensive
forward chaining technique and a report on a case study (the fundamental theorem
of arithmetic). We obtain shorter and more robust proof scripts by combining the
tactical approach and the forward chaining approach.

Proof length is not the only thing we seek to reduce, excessive control information
should also be eliminated. Knowledge-intensive forward chaining reduces only one
kind of control information. We have written tactics that implement simple heuristics
to invoke the forward chaining tactic and greatly reduced both the lengths of proofs
and the amount of control information they contain. How to further reduce low-level
control information in proof scripts is also discussed at some length.

The paper is organized as follows: Section 2 lays down the general background
of this work, Section 3 is an introduction to the forward chaining approach, to pre-
pare the reader for a case study of integrating forward chaining into a tactic-based
environment in Section 4, finally we summarize and expand in Section 5.

2 The Theorem Proving Context

2.1 Tactical Theorem Proving

Tactic-based theorem proving systems (Nuprl, HOL, Isabelle) are descendants of
LCF. Although their object languages differ, a common feature is the meta-language
ML 2. Tactics are programs written in ML to refine a (sequent style) goal into
(presumably) simpler subgoals. The simplest tactics are the primitive refinement
rules. The higher-order programming style of ML facilitates the combination of
simple tactics into complex ones.

In these systems, a collection of tactics defines a notion of obvious inferences.

In our work, we use a subset of the (object) language of Nuprl. The Nuprl
subset we use is essentially an order-sorted first order logic with subset, pairing
and lists. Equality reasoning in this language is simpler than in the full language of
Nuprl. In particular, it permits the use of a single global equality [19].

2.2 Knowledge-Intensive Forward Chaining

There are two important issues in applying a large number of lemmas to a reasoning
task: selecting the relevant lemmas and ensuring termination. Ontic addresses both

2 Oyster, the Edinburgh version of Nuprl, uses PROLOG as its meta-language.

issues with the concept of focusing. The design objectives of Ontic are: (1) to obtain
a practically effective proof verification system and (2) to model low-level human
mathematical reasoning. It has been used to verify the Stone representation theorem
for boolean lattices. Most existing interactive proof development systems do not
share the second objective of Ontic.

Ontic has a knowledge-based (declarative) counterpart to the tactic-based (pro-
cedural) notion of obvious inference in the systems mentioned above.

We explain Ontic in more detail below.

3 The Forward Chaining Tactic

This section serves two purposes: to explain the basic ideas of Ontic and to present,
at a high level, a particular Ontic-like system used in our work. Our version of Ontic
removes some of the features of Ontic that are not necessary for our experiment —
among them, automatic universal generalization 3.

3.1 Ontic in a Nutshell

The decision procedure Ontic is defined by a set of inference rules and a set of
lemmas. Basically, inference rules are applied under a mention restriction, where only
those instances containing subterms in the subterm closure of all input formulas are
allowed; lemmas are applied under focus restriction, where all members in a certain
closure of the set of lemmas are instantiated on a given set of terms, the focus set.

The reader is referred to [22] for a complete description of Ontic and to [23] for
a general theory of tractable inferences.

3.2 Forward Chaining Inference Relations

We present the forward chaining autotactic as a family of tractable inference relations
indexed by a finite set of terms, called focus terms.

The inference relation presented below is not new. It is different from those in
the original Ontic mainly in the constructive validity of the inference rules and the
use of (almost) standard first order syntax (Ontic takes advantage of non-standard
syntax to obtain a larger tractable fragment [21]).

Let |- denote the usual logical derivability relation in first order logic, specialized
to our particular language. Let |-o - denote the parameterized tractable approxima-
tions to |- that we shall define. Let |- abbreviate oy

For each F, |0 is quickly (polynomial time) decidable fragment of |-. A high
level proof consists of steps of single inference rules that define |- mixed with steps
of or.

ox will be presented in two steps: first the inference rules that make up |og,
and second, the restrictions on when these rules are applicable. For the algorithms

that implement these rules and restrictions, we refer the reader to the original papers
of McAllester.

3 There are two reasons for this: (1) tactics already perform introduction of universal
quantifiers and, more subtly, (2) adding universal generalization reduces the efficiency of
forward chaining considerably.

3.3 The Inference Rules

Here we give a set of inference rules that are constructively valid, so that forward
chaining proofs using them can be converted to Nuprl proofs.

The inference rules that go into | shall be presented in sequent calculus style.
So a typical rule would have the form

Shos® S'honw
> I_o}_”Q ’

However, when the £’s and F’s are identical in all places, the simpler form 1@—2 is
used.

Propositional Rules Following are the so-called Boolean Constraint Propagation
rules:

S U QLY D&Y @ v ¢ o= L
LY [v VY DVY [K3

These rules do not define a complete inference relation for intuitionistic propo-
sitional logic because V-elim and =—intro are absent. These rules require searching
or guessing hence are not used automatically in forward chaining.

We also have some derived rules:

~& W S(PVE) S(BVE) b W P VT T SV
—(@&¥) =(B&¥) - 2 V) 7 ®

4 - ¢ ¥ W PV (P=V)
=Y PU (P2V0) -9 '
These are mostly those contrapositives of the primitive rules that are both con-

structively valid and do not require search. Although negation is defined via impli-
cation, for efficiency, it is also included as a primitive.

Equality Rules The forward chaining rules for equality reasoning are reflexivity,
symmetry, transitivity and congruence (substitution of equals for equals). A complete
decision procedure for these rules is congruence closure [20, 29, 11] which is used by

all implementations of Ontic. Congruence closure is valid for the fragment of Nuprl
used here [19].

Quantifier Rules

Xlo Yz : T.&(z) Zlor(ainT)
Lo ruia®(a)

V-E is much more important than 3-I in practice, and it will receive more atten-
tion in the following explanations.

Note the absence of V-I and 3-E. V-I is usually applied by tactics in the beginning
of a refinement style proof. 3-E introduces new constants that the rest of the proof
somehow refers to. If this is done by the forward chaining tactic, the rest of the
proofs would have no access to these constants.

8 g e)

Type Inference Rules The following rules allow the inference of types of focus
terms in the presence of set types:

Lloz9(a) Llor(ainT)
Ve:T.zinT Ylogy,ain{z: T[e(z)}

Note that the first rule cannot be a lemma schema, because lemmas are only
applied to focus terms and the application requires that ‘z in 77 be true.

3.4 Restrictions on Rule Applicability

In addition to the focus restriction which is implicit in the quantifier rules, all rules
are subjected to the so-called mention restriction. These two restrictions together
ensure that |o, is quickly decidable. Focus restriction can be understood by in-
specting the quantifier rules carefully; mention restriction is the requirement that
for each application of a forward chaining rule, the Ts, @s, ¥s and ©s must all be
subexpressions of the rule set, lemma library, current goal sequent or focus set.

As a consequence, from @ we shall not infer S|0y,...,B|¥,,..., unless the dis-
Junction is mentioned (not only the Ws).

Similarly, given a = f(a), we do not infer @ = f(... f(a)...), unless the terms
mvolved in the latter are actually mentioned. Note, however, that in this case con-
gruence closure actually represents a = f(... f(a)...) implicitly.

3.5 Examples

Ezamplel. Let ¥ = {Vz,y:int.a+y=y+z,Vz:int.z2+0= z}. Then we can
prove X|-Vz : int.0+ z = z in two ‘high-level’ steps:

Vz,y:int.z+y=y+z Vr:int.z2+0==z
O+z==2
Ve:int.0+z==2z

("‘0{:,0})

(V-1)

Note that in the first step, all that the user has to supply is the focus set {z,0};
applications of both lemmas and some equality inferences are done by the system.

In practice, due to the high complexity in terms of the focus set size (see [22]),
we often limit the focus set size to that of the deepest quantifier nesting. The next
example shows that a larger focus set means fewer steps.

Ezample2. Let f : S — T and let ¥ = {Vz : T.®(z),Vz : S.&(f(z))=>¥(z)}. Sup-
pose we want to prove Vz : S.¥(z). Let a be a new constant of type S, then

Ve :T.9(z) Ve :S.&(f(z))=¥(x) .
(@) (u@y) S(f@)=>0a) o)

and ¥(a) follows by boolean constraint propagation.
Using the focus set F = {a, f(a)}, the above can be done in a single step of V-E
(boolean constraint propagation does not count as a visible step).

3.6 Some Properties of Ontic

What is the difference between Ontic’s use of lemmas and a naive backchaining
search through the entire collection of lemmas? Ontic is polynomially bounded
in some sense, hence can be regarded as forward chaining rather than searching.
However, we wish to be a little more precise about the complexity of Ontic. The
space complexity of Ontic is O(n?), where n is the size of the focus set and d is
the deepest quantifier nesting. In general, n is at least as large as d. In practice, d is
about 3 or 4.

Subformulas Property The focused instantiation rule V-E lacks subformulas prop-
erty in a rather strong sense.

Ezample 3. Let

Vz,y,2: N.maz3(z,y, z) = maz(maz(z,y), 2),
Y=< Vz,y: N.maz(z,y) = maz(y, z),
Vz,y,z : N.maz(maz(z,y), z) = maz(z, maz(y, z))

Then maz3(a,b,c) = maz3(a,c,b) follows from X, with a one step proof which
requires focusing on {a, b, c}. But maz3(a, b, c) = maz3(c, a, b) requires, in addition,
maz(a,b) in the focus set for a one step proof. Note that maz(a,b) does not occur
as a subterm of the goal or any lemmas in the library.

Repeated Use of Lemmas Let © = {Vz:int.z +1>z}. It has the obvious
consequence (...(a+1)+...41) > a, but Ontic cannot deduce this in a single step
because it needs to focus on the intermediate terms. Interestingly, we can infer the
same from a 4 1 > a, where a lemma about the monotonicity of + is used multiple
times, implicitly.

Consider again one of the lemmas in Example 2. Let £ = {Vz : 5. ®(f(z))=®(z)}.
Then

Vz:S.0(f(z)=d(z) B(f(a)) (

®(a) |_°{a,f(a),...,jﬂ-1(a)})

The conclusion is equally obvious for any n, but the focus set size grows linearly
with it. Induction and rewriting are two possible solutions to this.

Sequencing of Focus Sets Because of the space complexity associated with large
focus sets, simulating a large focus set with a sequence of smaller focus sets is
appealing. Let |‘°<}‘1,...,7-',.> denote the inference relation based on the sequence of
focus sets.

In order for the above to be different from |0 £, , facts derived from the previous
focus sets must be saved. The definition of o<, . 7, depends on what facts
are saved between successive focus sets. A reasonable choice is to use the mention
restriction again. Under this notion of focus sequencing, |_°<7-'n,fz> is not equivalent
to o £, 5,5 in general.

Ezample 4. Suppose that r(b) is mentioned, so that it will be saved if proven true
from any focus context (this can be done by adding the trivial hypothesis r(b) = r(b))
and consider

L =1{p(a,b),4(b,c), p(z,y) = r(¥), 4(z, y)&r(z) — s(z, y)}-ox,5(b, ¢)

The focus set {a,b,c} will get the goal in one step, the focus sequence Fs =
[{a,}; {b,c}] will also prove the goal, but the focus sequence Fs = [{b,c}; {a,b}]
will not prove the goal.

Moreover, there exists a focus set F such that no (non-repetitive) focus sequenc-
ing over proper subsets of F is equivalent to focusing on F itself (rough idea: con-
struct a cycle of dependencies).

Relationship to Unification-based Systems Because V-E and 3-1 are restricted
by the focus set, matching and unification can be avoided, and lemma instantiation in
Ontic is implemented via pre-instantiation on generic constants, focus binding with
these constants and congruence closure. This approach gives both the tractability of
Ontic and some of the weaknesses mentioned above, because lemma application on
intermediate results is limited.

What is a better trade-off? This question can only be answered in the context of
a theorem proving environment: when several tools are available, the virtue of each
may not be its individual power, but rather how well it works with other tools. We
cannot give a full answer to this question here.

4 The Fundamental Theorem of Arithmetic: a case study

Here we wish to evaluate the effectiveness of applying mathematical knowledge in
the form of a lemma library via focused forward chaining similar to Ontic. Our
choice of number theory is motivated by the need to improve arithmetical reasoning
in Nuprl. We want to see whether the knowledge-based approach gives a significant
boost to the tactical approach. Furthermore, Nuprl has two tactics for arithmetical
reasoning: Arith and Mono. Their presence offers possibilities of cooperation and
a limited form was exploited in this study.

Arith is a decision procedure for a fragment of number theory (see [9] for details).
It is part of Autotactic. Mono is a fixed collection of derived rules of inference
involving inequalities.

Below we discuss various aspects of the experiment.

4.1 Implementation

We have implemented a version of the forward chaining decision procedure containing
most of the features explained in previous section. Some omissions or limitations are
listed below.

We have limited the sizes of focus sets to 4, the deepest quantifier nesting in
our lemma library. This is necessary for reasonable response times, due to the space
complexity of Ontic mentioned earlier.

Type inference was not implemented as part of the forward chaining tactic. The
subtype relation is simulated via lemmas. Because there were only a few subtypes
involved, this approach was sufficient. The typing lemmas are

Ve : N.(zinint)&(0 < z)

Vz : N +.(zin N)&(z inint)&(1 < z)

Vz :{2..}.(2 < 2)&(z in N+)&(z in N)&(z in int)

Vz :int. (0 < z)=(zin N)&(1 < 2)=(zin N+)&(2 < z)=(z in {2..})

One limitation of this approach is that types like ‘prime factors of z’ are not
expressible to our forward chainer. We refer to our implementation of the forward
chaining tactic as OnticTac below.

4.2 The Library

The lemma collection determines the effectiveness of OnticTac. Adding more lem-
mas can make OnticTac arbitrarily stronger, but also slower, because of the memory
performance of OnticTac. Furthermore, adding arbitrary lemmas to the library can
also invalidate the result of the experiment. For both of these reasons, we have
limited the lemma library to a moderate size and only included relatively general
facts.

There are 109 lemmas expressing basic facts of number theory: including type
inclusion, basic facts about constants, and basic facts about primitive and defined
operators. The rather large total number is due to the number of redundant lemmas
included.

The redundancy can be classified by form as follows:

— specializations of some lemmas on constants

— overlappings of certain frequently used lemmas

— obvious consequences of Arith and Mono, in a sense, OnticTac acted as a
cache for Arith and Mono

The justifications for the redundancies can be seen by classifying them according
to function:

— Obvious facts not provable by Autotactic.

— Obvious facts that, though provable by Autotactic, need to be chained together
with other forward chaining proof steps. This is a form of internalization of some
of the power of Autotactic by OnticTac. This can also be thought of as using
OnticTac to cache some of the results of Autotactic. Many simple rewriting or
monotonicity lemmas are included for this reason.

— Obvious facts that, though establishable by Arith, are not established because
the simplification procedure in Arith goes further. Using Arith to prove these
lemmas and then using these lemmas with a particular focus binding can be
thought of as forcing Arith to retain particular intermediate results.

— Some special version or overlaps of more general lemmas that have frequent
applications. These are included to reduce the sizes of focus sets.

For instance, due to the frequent occurrence of integer constants like 0 and
1, many lemmas explicitly stating their properties are included: 0 < 1,1 < 2 or
Vz:int. 1<z <=>0<z Vr:int.z+2 =2z *2 = 2%z, etc. The extra equation in-
volving 2 is an example of pre-instantiating commutativity of +, this avoids having to
focusing on 2. As another example,Vz,y,z :int. 2+ (y+ 2) = (y+ 2)xc =z *xy+z* 2z
is an overlaps of distributivity and commutativity. This saves the focus term that
corresponds to y + z, otherwise needed for commutativity. Monotonicity lemmas,
such as Ym, n,i:int.0 < i=>m < n=>i * m < i * n also make up a fair portion of the
library.

We conjecture that shallow application of a large number of facts might subsume
some deep applications of a few facts if the results of deep applications can be
packaged properly by introducing meta-constructs.

As an example of when not to include redundant lemmas, imagine adding the
instantiations of all lemmas on a particular ground term ¢ (a form of partial evalua-
tion). Although this reduces the focus set in the sense that now we do not ever have
to focus on ¢, the space cost of doing this is at least as high as always adding an
extra focus term ¢, which is a rather inflexible way of using the focusing mechanism.

4.3 Examples, Issues and Observations

All examples shown in this section appear as they do in actual Nuprl sessions.
AFC, SFC and ASFC are interface tactics to OnticTac. AFC selects the focus set from
the variable declarations among the hypotheses, SFC takes an explicitly given list
of focus terms with their typing as an argument, ASFC does both. Also, ‘--*’ and
‘==’ are used to indicate an Autotactic wrapper — meaning that the Autotactic is
applied to unproven subgoals. Seq (a generalized version of the cut rule) sequences
in a list of formulas as intermediate goals, producing subgoals with each of these
and the original conclusion as conclusions and with previous formulas in the list as
additional hypotheses. THENL matches a list of tactics to the list of subgoals.

Proofs are shorter

Ezample 5.
>> Vi,j,p:N+.prime(p) & pli*j=>pli V plj
BY -- Repeat Intro

| 1. i:N+

| 2. j:N+

| 3. p:N+

| 4. p prime

| 5. pli*j
[->> pli V plj

BY -~ Cases [’pli’;’=pli’]
THENL [AFC;ILeft;IRight THEN AFC]
A proof without OnticTac [18] has a size of 43 top level refinement steps and

828 primitive refinement steps (abbreviated as 43/828); it is too large to be shown
here.

The new proof has size (2/68). Even including the proofs of the lemmas

Vp,q : N*t.prime(p)&—plg => rel_prime(p,q) (5/135)
Ya,b,c: Nt alb* c&krel_prime(a,b) => alc (4/95)
Vi,n:int.ilnV —iln (13/109)

the new proof is significantly shorter than the old one. Two of the lemmas mentioned
here are applied by OnticTac in a single step for the second case of the case analysis.
The proofs of these lemmas have a combined size of (9/230). In comparison, the old
proof has a size of (36/661) for this case.

On the whole, when we add up all the significant lemmas leading up to the prime
factor existence lemma, the new proof is shorter than the previous proof by a factor
of about 2-3, both in terms of top level (visible) refinement steps and the primitive
refinement steps 4.

This reduction in proof length is a result of several factors: (1) Mono was not
available at the time when old proof was completed, (2) OnticTac chains together
applications of several lemmas in a single step and (3) redundant lemmas increase
the effect of (2). The absence of the monotonicity rule turns out not to affect the
comparison significantly because in Howe’s proof{18], many monotonicity lemma had
been used instead.

Proofs are less brittle Using OnticTac produces more stable proofs because user
directives contain no explicit references to lemma names or hypothesis numbering .
Furthermore, provability is monotonic in the set of lemmas and hypotheses — adding
or strengthening lemmas or hypotheses does not invalidate a proof step.

A simple example to compare how old tactics and OnticTac reference lemmas
and hypotheses.

Ezample 6. Reducing flaky references by using OnticTac. We show proofs of the
same goal with and without OnticTac.

1,...,7. {omitted}

8. a> 0<b-a
BY AFC

1,...,7. {omitted}
8. a> 0<b-a
BY -- LemmaFromHyps ‘add num_to1‘ [8] [’-a’]

* The number of top level refinement steps is the more important measure of the amount
of user interaction. The primitive refinement steps are included to rule out the possible
biasing effect of collapsing multiple steps into a single step using tacticals.

10

The lemma add_num_to_1 states Vm, n,i : int. (m < n)=(m + i < n +). A simi-
lar lemma and Vz : int. 2 — 2 = 0 are referenced automatically in the forward chain-
ing proof. The latter was generated explicitly as a subgoal of ‘LemmaFromHyps’ in
the old proof and proven by Arith (hidden in the Autotactic wrapper). ‘...’ elides
irrelevant hypotheses in the sequent.

This example shows the reduction of extraneous dependencies by forward chain-
ing. Larger proofs benefit even more from this kind of increase in robustness.

Cooperation of OnticTac and Autotactic Rewriting of moderate length plus
congruence reasoning with small number of ground equations seems quite obvious
to human users, but poses great difficulty to automation. Roughly, Autotactic is
weak because it only uses a fixed set of rewrite rules, does not make use of (ground)
equational hypotheses in rewriting, and cannot incorporate equational lemmas. Con-
gruence closure based forward chaining uses ground equations very effectively, but
is weak in reasoning about equality and inequalities because multiple instances of
lemmas are often needed, requiring large focus sets.

It seems that OnticTac and Autotactic might be able to compensate for each
other’s deficiencies through some mechanism of cooperation. We explored one par-
ticular form of cooperation: dividing proof burdens through the use of the cut rule
(called ‘seq’ in Nuprl) and the “THENL’ construct of the meta-language.

As a first step, mediation is done by the human user by explicitly distributing
proof obligations between Autotactic and OnticTac. Automation of this turned out
to be difficult, for reasons given below.

The human mediation introduced a lot of low level control information into proof
scripts. This is undesirable in general.

We illustrate these issues and the user decisions by examples.

Ezample 7. This is one subgoal in the proof of a lemma that says two numbers are
relatively prime iff the greatest-common-divisor of them equals to 1.

1. 1:int
2. 2<1
3. Va,b:N+.a+b<(1-1)&rel prime(a,b)=>(a,b)=1
4. a:N+
5. b:N+
6. a+b<l
7. rel prime(a,b)
8. a> a+(b-a)<1-1
BY -- Seq [’'b<l-a’;’1<a’;’1l-a<1-1’;’b<1-1’]
THENL [AFC;AFC;ASFC [(’1’,’int’)];Idtac;Idtac]

Idtac leaves its goal unchanged, hence passing it to the Autotactic wrapper, hence

to Arith. As a result, b < ! —a,1 <aand l—a <1 -1 are proved by OnticTac;
b<l-1and a+ (b—a) <!—1 are proved by Arith.

11

Although this proof is robust in the sense of being monotonic in the lemma
collection and hypotheses, it still requires a lot of detailed user knowledge about
both OnticTac and Arith in breaking up the focus set and distributing subgoals.

The above goal can also be proved by a single step of OnticTac, with the focus
set {a,b,—a,l,1,a — 1,1 — 1,a + (b — a)}, assuming the standard lemmas about
commutativity and associativity of +, cancellation with — and transitivity of < and
=. A focus set of such a size would have taken significantly longer running time than
one of size 4 and, even more critically, more space. Moreover, the choice of such a
focus set still requires a lot of knowledge about OnticTac.

As another example of the kind of knowledge required to guide this kind of

proofs by choosing cut formulas and focus sets, here is the complete proof of a
lemma mentioned earlier.

Ezample 8.
>> Va,b,c:N+.al|b*c&rel prime(a,b)=>alc
BY -- Repeat I

1. a:N+

2. b:N+

3. c:N+

4. al|b*c

5. rel_prime(a,b)

BY -- Seq [’(a,b)=1’] THENL [AFC; OnLastHyp (RPE [‘r‘;‘s‘])]
| 6. r:int
| 7. s:int
| 8. r*a+s*b=1
|->> alc
BY -- OnLastHyp (Times ’0<c’)
| 9. c*(r*a+s*b) = c*1 in int

|->> alc
BY —- Seq [’c=(c*r)*at+s*(b*c)’; ’al(c*r)*a’; ’als*(b*c)’]
THENL
[Idtac;

SFC [(’a’,’int’);(’c*r’,’int’)];
SFC [(’a’,’int’);(’s?,’int’); (’b*c’,’int’)];
SFC [(’a’,’int’); (’(c*r)*a’,’int’); (’s*(b*c)’,’int’)]]

Let us focus on the last step in the above example and examine: (1) the choice
of the cut goals, and (2) the choice of the focus terms for each subgoal.

Again this step is possible by OnticTac in a single step with a large focus set
(exercise for the reader). However, due to the high cost of large focus sets, we chose
to divide the goal into smaller pieces and feed them to OnticTac and Autotactic
according to their respective strengths.

Selecting cut formulas and focus terms requires detailed knowledge of how the
proof will proceed. Take the first cut formulas, for example. ¢ = (c*r)*a+s*(b*c) is a
rewrite of hypothesis 9. It was so chosen because Arith is capable of proving this by
rewrite (if given this formula explicitly) and it matches the two divisibility subgoals

12

better. Without this cut formula, the two divisibility subgoals would require larger
focus sets in order to prove the dividends equal to respective subterms in hypothesis
9 by commutativity and associativity.

The choice of these cut goals requires

— knowledge of the workings of the Autotactic (Arith and Mono)
— knowledge of OnticTac
— knowledge of how the proof will proceed

Although requiring some knowledge about the capabilities of these tactics is
reasonable, one would like to minimize this requirement as much as possible. And
detailed knowledge about how the proof will proceed really subverts the idea of
having the machine filling in tedium. At present, we know of no general purpose
interactive theorem proving systems that do not require the user to have fairly
detailed knowledge of the hidden subproofs that these systems supposedly “fill-in’.
Rewriting steps may be an exception, but simplifying rewrite only plays a limited
role in these systems.

These examples raise serious questions about the relationship between OnticTac
and Arith/Mono. One way to pose these questions is as a choice among:

1. Putting enough lemmas into the library so that, with very large focus sets,
OnticTac can supersede Arith/Mono.

2. Using a library similar to the above but dividing proof burdens among different
incarnations (i.e., different focus sets) of OnticTac to reduce the focus set size

3. Dividing proof burdens among OnticTac, Arith and Mono, as we have done
in this experiment

4. Integrating Arith, Mono and other useful decision procedures directly into
Ontic.

(1), besides having high space cost, also has limitations: Arith applies a few
facts deeply while Ontic applies many facts shallowly. It would be a test of the
hypothesis that results of deep applications of some important facts can be packaged
into lemmas and applied shallowly. This approach requires extending the object
language with meta-constructs. Moreover, it is unlikely that either style of reasoning
can subsume the other.

(2) is different from focus sequencing because the different incarnations of On-
ticTac can exchange facts among themselves, thus there is no dependence on the
ordering as in focus sequencing. This may not require focus sets as large as for (1),
but is not expected to overcome the limitations of (1).

(3) requires intelligent decisions, either by the user or some tactics. These are
difficult options: while machine intelligence is difficult to achieve, applying human
intelligence in making nitty-gritty decisions often reduces proof reusability.

At the least, (4) requires combining rewrite with congruence closure, an interest-
ing research direction in its own right [8, 32, 25]. Whether integrating rewrite and
‘obvious’ induction [24] into Ontic will add enough deep applications of facts to
provide a natural notion (approximating human judgement) of obviousness remains
to be seen. In general, it also raises the question of how to integrate decision pro-

cedures. Cooperation among disjoint and convex decision procedures is studied in
[30, 28] .

13

Focus Set Selection Large focus sets are impractical for currently known algo-
rithms implementing the tractable inference relations defined by Ontic. Lacking
the subformulas property implies that heuristics for automatically choosing focus
sets are likely to be inaccurate. These two facts make automatic selection of focus
terms difficult: poor performance of large focus sets rules out over-estimates, lack of
subformulas property makes over-estimates highly likely. On the hopeful side, auto-
matic focus set selection opens up the possibility of simulating large focus sets with
a sequences of small focus sets.

Let us observe that each lemma defines a ‘redex’ for ‘reduction’ and focus sets
that do not contain redices are useless. For example, applying the commutativity
lemma requires two focus terms that are operands of a binary operator. Such redices
usually generate small focus sets. By preprocessing the lemma library, we can obtain
the redices and use them to select small focus sets. Because of the order dependence
of focus set sequencing, it is necessary to either choose a particular order to sequence
or to try all orderings. Not all pairs of focus sets are order sensitive, many are
independent of each other. It seems possible, at the time of pre-processing of the
lemma library, to identify those ‘redices’ that have order dependence.

A crude heuristic for selecting small focus set can be found by noting that most
‘redices’ are ‘close relatives’ in the term structure tree. 3 A crude heuristic for or-
dering is to sequence the focus sets in a bottom-up order. The combination of these
simple heuristics works relatively well for many cases, but is not always the right
order to sequence focus sets. These simple heuristics have been tested to cut down
large focus sets selected by the user and the experimental result is somewhat en-
couraging: focus sets with up to 10 terms have been specified and the sequencing
of them takes several minutes of real time. % In contrast, a single small focus step
typically takes on the order of a few seconds to half a minute, and a focus set of 10
terms would have taken on the order of an hour.

In particular, examples 7 and 8, among others of similar complexity, are proved in
a single step with focus sequencing on large focus sets chosen by the user. However,
focus sequencing requires additional terms be mentioned in order to save enough facts
between each subset focusing. These additional terms correspond to the subterms in
the cut formulas of the proof shown earlier, plus others needed to permit focusing to
simulate rewriting. Moreover, choosing the focus terms and the additional mention
terms require knowledge of the proof, to about the same degree of detail as before.

In general, the choice of focus terms tends to involve the terms/subterms of the
hypotheses and conclusion of the current sequent. Similar observations were also
made in [13, 12].

For a more limited forward chaining tactic, Elkan was able to use the simple
subterm heuristic mentioned above [12]. There seems to be a three-way trade-off
among the power of the forward chaining tactic, its computational complexity and
the ease of applying it in an automated fashion.

® If the logical connective ‘&’ appears in a lemma, then members of a redex are not
necessarily close neighbors and are not easily recognized. So this approximation picks
out those cases that are efficiently recognizable.

® Real time is a better measure because it includes the impact of paging, a significant
factor in this experiment. Time is measured on a Sparcstation 1.

14

Recognition versus Indexing Whether a tactic is applicable in a given situation
is the recognition problem. What tactics are applicable and what parameters to apply
them with (in the case of parameterized tactics, such as focusing) is the indezring
problem. Search can reduce indexing to that of recognition, but the search space can
be quite large, sometimes infinite, when tactics take parameters.

A minimum requirement to a solution of the recognition problem is some kind
of declarative representation of tactics. In [5, 4, 6], a refinement of the tactic-based
approach is taken, where tactics are given partial specifications in the form of pre-
conditions and post-effects. In contrast to McAllester’s notion of ‘obvious by known
facts’, Bundy’s approach can be characterized as defining a notion of ‘obvious by
known methods’. The relationship between these two notions is extremely intricate
and does not seem to be explored in the literature.

A further requirement of a declarative representation may be a small meta-
language to facilitate reasoning — the full expressive power of ML is not required
to express simple idioms and also makes it difficult to reason about tactics. Meta-
reasoning about tactics is one of the motives behind on-going work on reflection in
the Nuprl group [1].

The recognition problem itself requires theorem proving. A sensible solution
might be to use another notion of ‘obviousness’, to perform limited inference in
recognizing pre-conditions of tactics. Moreover, the internal data-structure used by
an Ontic-like tactic might also provide a solution to the indexing problem.

Tactics that are like decision procedures tend to have difficult recognition prob-
lems. In this sense, Arith and OnticTac are both too powerful. The focus set pa-
rameter of OnticTac also makes the indexing problem difficult. In contrast, Bundy
advocates synthesizing decision procedures out of simple ‘proof plans’ in [7]. Perhaps
some of our focus selection and sequencing heuristics can be formulated as simple
‘proof plans’ with pre-conditions.

Focus sequencing heuristics blur the distinction between mechanisms to achieve
a basic notion of obviousness and proof plans based on that. It is not clear whether
proof plans should be used to repair defects in a minimum obviousness decision
procedure or should rely on one. Perhaps the distinction is not real.

However, it is not clear whether combining proof plans is a good way to achieve a
basic notion of obviousness or having a basic notion of obviousness facilitates proof
plan combinations.

There seems to be a parallel between the relationship of facts and methods on
the one hand, and forward chaining and backward chaining as evaluation/inference
mechanisms on the other. Combinations of forward and backward chaining at the
same syntactic level have been studied in the context of deductive databases [34, 27]
and of theorem proving [33]. However, lemmas and plans do not seem to belong to
the same class of objects.

Monotonicity Maintaining monotonicity under tactical control is non-trivial. By
their very nature, tactics make decisions in the course of searching for a proof. The
general problem is: given a collection of declarative facts and a collection of control
heuristics, how to add new facts and new heuristics monotonically, i.e. without
disabling old solutions. And more ambitiously, how to add new facts and heuristics

15

without increasing the complexity of old solutions.

There seems to be two notions of monotonicity: autotactic monotonicity is the
property of autotactics with respects to additions of lemmas and tactics; interactive
monotonicity is the property of a proof script (like we have seen in this paper) that
contains decisions made by the user. Interactive monotonicity is much harder to
achieve, because it requires both autotactic monotonicity and a disciplined approach
to constructing proof scripts. Moreover, these two are not independent factors to
control.

Relation to logic programming based approaches Logic programming and
unification based techniques, such as used in Isabelle[31], has been suggested as
another way to reduce tedium. Logic programming is typically a top-down search
procedure. Top-down reasoning with caching seems to perform the same abstract
computation as bottom-up reasoning. See for example [3, 33]. A more detailed discus-
sion of the relationship between bottom-up database evaluation and forward chaining
theorem proving is beyond the scope of this paper.

Performance As we have noted above, typical response time is under half a minute
for single focus step and a few minutes for sequencing moderately sized focus sets.
The current implementation leaves much room for optimization.

As can be expected, expanding a proof using OnticTac often takes longer than
expanding one constructed with Nuprl’s tactics. Since practical theorem proving
requires good response time, efficient implementation of knowledge-intensive forward
chaining is a challenge for the future.

In our experiments we have noticed a performance degradation, when going from
a Sun-4 with 40Mb to one with 16Mb. This indicate a need to look for algorithms
for forward chaining with better memory reference locality.

5 Conclusions and Future Work

We have seen that applying a knowledge-based tactic can significantly shorten in-
teractive proofs and increase robustness in the sense of replayability.

Restricting the size of focus sets keeps the response time acceptably low, but
forces us to resort to either: (1) cooperation with other tactics, such as Arith or (2)
sequencing small subsets of a larger focus set. Currently, both approaches require a
fair amount of control information.

We have applied some simple heuristics for selecting and ordering focus sets
and had some success. We are currently exploring heuristics that will identify ‘rel-
evant’ terms to mention during sequencing. This is a less daunting task because
the complexity of Ontic only depends on the mentioned terms polynomially, hence
over-estimating mention terms is not as big a problem as over-estimating focus sets.
More sophisticated heuristics for selecting and ordering focus sets are currently be-
ing explored. We would also like to settle the question of whether good heuristics
for sequencing focus sets will replace cooperation with Arith and Mono.

16

Improving OnticTac by simply adding more lemmas is limited because of the
shallow applications of them by OnticTac. However, Adding more lemmas can com-
plement the focus sequencing heuristics. Our current library was not designed with
focus sequencing in mind. We expect that focus sequencing heuristics will compen-
sate for defects in the lemma library and additional lemmas in the library will also
make it easier to find simple sequencing heuristics that are effective. It would be
desirable to find coordinated policies of adding useful lemmas to the library and of
choosing focus sets.

Focus sequencing and refinements via lemma library pre-processing seems to be
a promising direction to extend our work.

Improving OnticTac by incorporating rewriting and/or induction are impor-
tant research problems just beginning to be explored. We expect progress in these
directions to complement our approach.

In general, it is difficult to combine several weak tactics to obtain stronger tactics
because recognizing conditions of applicability of arbitrary tactics can be as hard as
theorem proving.

Cooperation by distributing subgoals has the same recognition problem. Proofs
in which this distribution is made by the human user, contain much control infor-
mation.

Shorter proofs sometimes contain more control knowledge from the user — e.g.,
the selection of which tactic to apply with what parameters, or more specifically, the
selection of which terms to focus on and in what order. The significant role of this
control knowledge can been appreciated by noting that almost all existing theorem
provers only exhibit their power in the hands of experts (poor user-interface play a
significant, but smaller, part, in my opinion).

An important open question remaining is the relationship between decision pro-
cedures and Ontic-like procedure. This work started as a study of how the tactical
approach and the Ontic-like approach might complement each other and ends with
a vision containing three components with different characteristics: decision proce-
dures, Ontic-like extensible knowledge-based procedures and tactics that express
high-level idioms in proof construction. A practical system is likely to require com-
bination of all three.

Acknowledgement

The author is grateful to Robert Constable, Charles Elkan, Douglas Howe, David
McAllester and one anonymous referee for helpful comments on the paper and to
Bill Aitken, James Allan and Keith Gasser for reading earlier drafts.

References

1. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William B. Aitken. The
semantics of reflected proof. In Proceedings of the Fifth Annual Symposium on Logic
and Computer Science, pages 95-107. IEEE Computer Society, June 1990.

2. D. Basin. An environment for automated reasoning about partial functions. In R. Lusk
and R. Overbeek, editors, Ninth International Conference on Automated Deduction,

17

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

volume 310 of Lecture Notes in Computer Science, pages 101-110. Springer Verlag,
May 1988. Also as Cornell CS TR 87-884.

. F. Bry. Query evaluation in recursive databases: bottom-up and top-down reconciled.

Data & Knowledge Engineering, 5(4):289-312, 1990.

. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans

for induction. Journal of Automated Reasoning, page (in press) Earlier version available
from Edinburgh as Research Paper No 413, 1988.

. Alan Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and

R. Overbeek, editors, Ninth International Conference on Automated Deduction, vol-
ume 310 of Lecture Notes in Computer Science, pages 111-120. Springer Verlag, 1988.
Longer version available from Edinburgh as Research Paper No. 349.

. Alan Bundy. A science of reasoning. In J.-L. Lassez and G. Plotkin, editors, Computa-

tional Logic: Essays in Honor of Alan Robinson, pages 178-198. MIT Press, Cambridge,
MA, 1991.

. Alan Bundy. The use of proof plans for normalization. Report, Dept. of Artificial

Intelligence, University of Edinburgh, 1991.

. Leslie Paul Chew. An improved algorithm for computing with equations. In the 21st

Annual Symposium of Foundations of Computer Science, pages 108-117. IEEE Com-
puter Society Press, 1980.

. Robert L. Constable, Scott D. Johnson, and Carl D. Eichenlaub. Introduction to

the PL/CV2 Programming Logic, volume 135 of Lecture Notes in Computer Science.
Springer-Verlag, New York, 1982.

Robert L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the common subex-
pression problem. JACM, 27(4):758-771, October 1980.

Charles Elkan. Personal communication, 1991.

Charles Elkan and David McAllester. Automated inductive reasoning about logic pro-
grams. In Kenneth Bowen and Robert Kowalski, editors, Fifth International Confer-
ence on Logic Programming, volume 2, pages 876-892, Seattle, Washington, August
1988. MIT Press.

A. Felty and D. Miller. Specifying theorem proversin a higher-order logic programming
language. In R. Lusk and R. Overbeek, editors, Ninth International Conference on
Automated Deduction, volume 310 of Lecture Notes in Computer Science, pages 61-80.
Springer Verlag, 1988.

M. Gordon. A proof generating system for higher-order logic. In Proceedings of the
Hardware Verification Workshop, 1989.

Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

D.J. Howe. Automating Reasoning in an Implementation of Constructive Type Theory.
PhD thesis, Cornell University, [thaca, NY, April 1988.

Douglas J. Howe. Implementing number theory, an experiment with Nuprl. In Eighth
International Conference on Automated Deduction, volume 230 of Lecture Notes in
Computer Science, pages 404-415. Springer Verlag, 1986.

Douglas J. Howe. Equality in lazy computation systems. In Proceedings of the Fourth
Annual IEEE Symposium on Logic in Computer Science, pages 198-203. IEEE Com-
puter Society, June 1989.

Dexter C. Kozen. Complexity of finitely presented algebras. In Proceedings of the Ninth
Annual ACM Symposium on the Theory of Compututation, pages 164-177, 1977.

18

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

D. McAllester, R. Givan, and T. Fatima. Taxonomic syntax for first order inference.
In Proceedings of the First International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 289-300, 1989. To Appear in JACM.

David McAllester. Ontic: A Knowledge Representation System For Mathematics. MIT
Press, Cambridge, Massachusetts, 1989.

David McAllester. Automatic recognition of tractability in inference relations. Memo
1215, MIT Artificial Intelligence Laboratory, February 1990. To appear in JACM.
David McAllester. Some observations on cognitive judgements. In AAAI-91, pages
910-915. Morgan Kaufmann Publishers, July 1991.

David A. McAllester. Grammar rewriting. In Eleventh International Conference on
Automated Deduction. Springer Verlag, 1992.

C. Murthy. An evaluation semantics for classical proofs. In Proceedings of the Sizth
Annual IEEE Symposium on Logic in Computer Science, pages 96-107, Amsterdam,
The Netherlands, July 1991.

Jeffery F. Naughton and Taghu Ramakrishnan. Bottom-up evaluation of logic pro-
grams. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor
of Alan Robinson, pages 640-700. MIT Press, Cambridge, MA, 1991.

Greg Nelson. Combining satisfiability procedures by equality-sharing. In Automated
Theorem Proving: After 25 Years, pages 201-211. American Mathematical Society,
1983.

Greg Nelson and Derek Oppen. Fast decision procedures based on congruence closure.
JACM, 27(2):356-364, April 1980.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979.

L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science, pages 361-385. Academic Press, 1990.

David J. Sherman. Lazy directed congruence closure. Tech report 90-028, University
of Chicago, September 1990.

Mark E. Stickel. Upside-down meta-interpretation of the model elimination theorem
proving procedure for deduction and abduction. Technical Report TR-664, Institute
for New Generation Computer Technology, Tokyo, Japan, May 1991.

Jeffery D. Ullman. Principles of Database and Knowledge-base Systems. Computer
Science Press, 1989. Chapter 13.

19

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif

