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Least squares estimation (in its several forms) and best linear 

unbiased estimation are reviewed; briefly, for a linear model having non-

singular dispersion matrix, and in some detail for the singular case, for 

which certain equivalences among the estimation methods are established 

with some new and shorter proofs. 

1. INTRODUCTION 

1.1 The model 

We deal with the linear model y = xa + e for y of order N X 1, with 

expected value E(y) = xa for a being a p X 1 vector of parameters and X an 

N x p matrix of known values. e is a vector of random errors with E(e) = 0 

and dispersion matrix V that is symmetric and non-negative definite 

(n.n.d.). Thus the model is 

y s XB + e, E(y) = XB and var(y) = V, (1) 

with 

V = V' of order N, n.n.d., of rank rV; ( 2) 

and 

X, of order N x p, has rank rX S p < N. ( 3) 
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Frequent use is made of the so-called "hat" matrix 

- + H = X(X'X) X' = XX = H' = H2 with HX =X 

and of 

M = M' = M2 = I - XX+ = I - X(X'X)-X' with MX = 0 ( 4) 

where X+is the Moore-Penrose inverse of X, and (X'X) is a generalized 

inverse of X'X (see Appendix, Section 6.1). 

The paper deals with estimation of the mean vector E(y) = XP, all 

elements of which are estimable, as is every linear combination of them, 

l'XP for any vector l'. We begin with ordinary least squares estimation 

(OLSE), followed by weighted least squares estimation (WLSE) using an 

arbitrary n.n.d. weight matrix W. Neither of these estimation methods 

involves the dispersion matrix var(y) = V. The latter is involved in 

generalized least squares estimation (GLSE), in maximum likelihood esti-

mation (MLE), and in best linear unbiased estimation (BLUE). These are 

dealt with in Section 2 for V non-singular and in Section 3 for V singular. 

Section 4 deals with relationships among the methods, and Section 5 dis­

cusses what is called a pseudo BLUE (P-BLUE). Section 6 is an appendix 

containing pertinent matrix results (most of them well known). They have 

equation and lemma numbers prefixed with A. 

1.2 OLSE: ordinary least squares estimation 

Ordinary least squares estimation of XB is based on minimizing 

S = (y- XB)'(y- XP) ( 5) 

with respect to p. This leads to the well-known normal equations 

X'XP0 = X'y ( 6) 

where XB0 is the corresponding estimator of XJ. This will be denoted OLSE: 

- + OLSE = XP0 = X(X'X) X'y = XX y = (I - M)y . (7) 
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Through having E(y) = XP and KX = 0, the unbiasedness of (7) for XP is 

self-evident. The dispersion matrix of (7) is 

+ + var(OLSE) = XX VXX • 

1.3 WLSE: weighted least squares estimation 

(8) 

Weighted least squares using an arbitrary non-negative definite 

(n.n.d.) weight matrix W (where, through being n.n.d. it can be factored as 

W = T'T for T real and of full row rank rW) involves minimizing 

SW = (y- XP)'W(y- XP) = (Ty- TXP)'(Ty- TXP). ( 9) 

Based on (6) this gives 

X'T'TX8° = X'T'Ty, i.e., X'WXB0 = X'Wy. (10) 

Then XP0 derived from this is the weighted least squares estimator, to be 

denoted m(V), and is 

m(W) = X(X'WX)-X'Wy (11) 

We use the symbol m(W) because of being interested in special values of W; 

e.g., OLSE of (7) is m(I). The dispersion matrix of (11) is 

var(m(W)) = X(X'WX)-X'WVWX((X'WX)-)'X'. (12) 

The occurrence of (X'WX) in (11) means that m(W) of (11) is not necessar-

ily invariant to what generalized inverse is used for (X'WX)-. Nor is m(W) 

necessarily unbiased for XS. The following theorem provides conditions 

under which invariance and unbiasedness are assured. 

Theorem 1. A necessary and sufficient condition for m(W) to be both 

invariant to (X'WX) and unbiased for XB is that X = CWX for some C. 

Proof. First, sufficiency: if X= CWX = CT'TX then from (11) 

m(W) = CT'TX(X'T'TX)-X'T'Ty = C'T'TX(TX)+Ty , (13) 
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the second equality coming from using TX for X in (A6); and it demonstrates 

the invariance of m(W) to (X'T'TX)-. Similarly, also using TX for X in 

(A4), 

E[m(W)] = CT'TX(X'T'TX)-X'T'TXP = CWXS = XP . 

This is sufficiency established. 

Second, to show necessity, for any matrix N using N'N as A in (A7) and 

then post-multiplying the result by N' gives, for arbitrary P and Q, 

( 14) 

on using N for X in the transpose of (A4). Now use TX for li 

in (14) and simultaneously pre-multiply (14) by X and post-multiply it by 

Ty. This yields 

But taking a(W) = X(X'WX)-X'Wy as invariant to (X'WX) , reduces (15) to 

[X- X(X'WX)-X'WX]PWy = 0 V P . (16) 

Therefore, by Lemma A2, with Wy ¢ 0, 

(17) 

Also, if •(W) is unbiased, (11) gives X(X'WX)-X'WXP = XP V 8, and this 

too, implies (17). Hence if a(W) is invariant to (X'WX) and/or is unbiased 

for XP, (17) holds and so X= X(X'WX)-X'WX = CWX for C = X(X'WX)-X'. Q.E.D. 

m(W) is the weighted least squares estimator of X8 based on the (n.n.d.) 

weight matrix W. It is a generalization of the Aitken (1935) estimator 

-1 -1 -1 
that has X of full column rank and W non-singular: X(X'V X) X'W y. In 

this case there is no problem about invariance; nor is there with 
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for then X = cw-1x of Theorem 1 is satisfied for C = W. Difficulty arises 

only when X has less than full column rank and W is singular, for then the 

desirable properties of invariance and unbiasedness are met only when the 

condition of Theorem 1 is satisfied, namely when there exists a C such that 

X= CWX. Nevertheless, in view of m(W) being a generalization of the 

Aitken estimator, which has often been called a weighted least squares 

estimator (WLSE), and because this name and the name generalized least 

squares estimator (GLSE) have each been used for a variety of cases, and 

sometimes interchangeably (see, e.g., Puntanen and Styan, 1989)- for these 

reasons, and because of the generality of m(W), there would be merit in 

giving m(W) a name. In keeping with Plackett (1960), who describes 

-1 (X'WX) X'Wy as coming from an "extended" principle of least squares, we 

therefore might call a(W) the EWLSE, "estimated weighted least squares 

estimator." 

Of course if one wishes to use m(W) without the condition of the 

theorem being satisfied, the invariance property could be defined away by 

always using X(X'WX)+X'Wy. In doing so, an extension of a result in 

Baksalary and Kala (1983) can be used. 

Lemma For 

(18) 

a necessary and sufficient conditon for X(X'WX)+X'Wy = xb to equal OLSE = 
0 

xb is b = b. 

0 

Proof. Sufficiency is obvious. Proving necessity starts with Xb = Xb 

so that 

(19) 

- + = X'(XX') XX , has two conse-

quences: 
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+ + for any R, (RX) = X'U for some U; and X XX' = X' • 

Hence each b in (18) has the form 

b = X'Uy = X'u for some U and u • 

Therefore each side of (19) has the form 

0 

Thus b = b. Q.E.D. 

Despite this lemma, confining attention to X(X'WX)+XWy seems restrictive 

and we prefer to direct attention to m(W) and some special cases thereof. 

In doing so we deal first with the easy and commonly discussed case of non-

singular V. 

2. NON-SINGULAR V 

2.1 GLSE: generalized least squares estimation 

Although the Aitken estimator is sometimes called the generalized 

least squares estimator (GLSE), we reserve this name for the special case 

-1 
of m(W) when V is used in place of W: 

(20) 

with dispersion matrix, from (12), 

(21) 

Clearly, the condition X= CWX of Theorem 1 with W = V-l is satisfied for 

C = V, and so (20) is invariant to its generalized inverse and is unbiased 

for XB. 

2.2 MLE: maximum likelihood estimation 

When elements of y have a multivariate normal distribution, i.e., y-

JKXB,V), maximum likelihood estimation is based on maximizing 

lN t -1 
(2~) 2 lVI exp -t(y- X8)'V (y- XB) · 
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This leads to minimizing SW of (9) with W replaced by v-1 Hence the esti-

mation equations are (11) with the same replacement, so that the maximum 

likelihood estimator (MLE) is 

(22) 

Hence the MLE has the properties of the GLSE (particularly invariance and 

unbiasedness). Moreover, 

Thus MLE also has all the properties that normality implies, additional 

to those of GLSE, which demands no assumption of normality on y. 

2.3 BLUE: best linear unbiased estimation 

This method of estimation involves deriving a vector t' for given ~· 

such that (i) t'y is unbiased for ~·x~ and (ii) from all unbiased esti-

ma tors t' y of ~'X~ the one to be described as "best" is that which has 

minimum variance. Requirement (i) demands having 

t'xa = A'xa v ~; i.e., t'X = ~·x. ( 23) 

Requirement (ii) demands choosing t to simultaneously satisfy (23) and 

minimize v(t'y) = t'Vt. Using Lagrange multipliers 29' this means minimiz-

ing t'Vt + 29'(X'l- X't) with respect tot and 8, which leads to equations 

Vt = X9 (24) 

and 

t'X = l'X . ( 25) 

With V non-singular, (24) is consistent for a solution for t: 

(26) 

Substituting (26) into (25) gives 

X,v-1xe X'' ' 9 = (X'V- 1X)-X'' . = A, J..e., "- ( 2 7) 
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Then using 9 from (27) in (26) gives 

(28) 

Hence the BLUE of 1'Xa, being t'y, is 

Therefore, on letting 1' be successive rows of IN, the BLUE of X8 is 

m(V-1) = BLUE= X(X'V-1X)-X'V-1y . (30) 

Immediately it is seen that 

m(V-1) = BLUE = MLE = GLSE • (31) 

3. SINGULAR V 

Some estimators of Xa when V is singular have the form of m(W) using 

V+ v or • But in some cases the BLUE requires explicit use of neither V-

nor v+, as in Section 3.4. 

3.1 GLSE and NLE using the Moore-Penrose inverse, V+. 

With V being singular but n.n.d., factor Vas V = L'L for L of full 

row rank, the rank of V. Then defining T (different from the T in Section 

1.3) as 

T = (LL')-1L, gives TVT' = I and~ = T'T , (32) 

and the vector of transformed data 

w = Ty = TXa + Te has var(w) = TVT' = I • (33) 

Hence OLSE of X8 from w of (33) gives, similar to (10), X'T'TXa0 = X'T'w = 

X'T'Ty which, from (32), is X'V+xa0 = X'V+y. Hence, from (11) the esti­

mator is 

(34) 

+ + -From Theorem 1, m(V) is invariant to (X'V X) if and only if X= cv+x 

for some C. 
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Clearly, m(V+) is the GLSE of XB that has been obtained from Ty of 

(33); and under normality it is also the MLE, as can be obtained from the 

likelihood of Ty- h(XB, I). Thus 

( 35) 

3.2 BLUE when VV-X =X is m(V-). 

Specification of best linear unbiased estimation is exactly the same 

for singular Vas for non-singular V in (23), and through using Lagrange 

multipliers leads to equations (24) and (25) that have to be solved for t 

and 9. For non-singular V this is done very easily, starting with t = 

v- 1xe of (26), obtained from (24). But for singular V the solving of (24) 

and (25) can be somewhat different because it does not always involve just 

-1 
the simple replacement of V by V . Indeed, since the solution is a form 

of m(W) when VV-X = X, and is quite different in appearance when that 

equality is not assumed, we consider two cases: first, when VV X= X and 

second, a more general result (of which the first is a special case). 

As a preliminary it is worth emphasizing, as in Lemma A4, that when 

X = VV X is true for some V- it is true for all V (because X= VV X= 

vv-vv-X = vv-x). Therefore when X= VV-X we think of it being true not 

just for one V- but for every V . 

Using the Lagrange multiplier approach when V is non-singular involves 

solving (24) and (25). The equations Vt z X8 of (24) when VV X= X become 

Vt = VV-X8 and are therefore consistent for a solution for t, its form 

being t = v-xe. This leads to BLUE in exactly the same way as (30) is 

derived: 

(36) 

Its variance matrix is 

( 37) 
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Unbiasedness of BLUE in (38) and invariance to the choice of (X'V -X) 

is assured by Theorem 1 because the condition X = CWX of that theorem is 

satisfied with W = V- and C = V when VV-X = X. Furthermore BLUE is 

invariant to the choice of V- by Lemma A4, and so is equal to GLSE of (35). 

Thus 

- + m(V ) = m(V ) = BLUE = MLE = GLSE when VV X = X . (38) 

The equality of BLUE, MLE and GLSE when VV""X = X is thus the same as in 

(31) for non-singular V. 

3.3 BLUE - the general case 

Derivation of BLUE = m(V-) in (36) is based on the same methodology as 

used for deriving BLUE in the case of non-singular V, namely, using 

Lagrange multipliers. But, in general, the technique of Lagrange multi-

pliers does not always give the same results for minimization subject to 

side conditions as do other techniques. We therefore consider an alterna-

tive derivation. 

Starting with (I- M)y as the OLSE of Xa from (7) gives l'(I- M)y as 

the OLSE of l'XB. [Equation (4) defines M.] We now ascertain what linear 

function of the OLSE residuals My should be added to l'(I- M)y to yield 

the BLUE of l'XB in the form 

BLUE(l'X8) = l'(I - M)y + ~'My (39) 

for some vector ~. Since E[(I - M)yJ = X8 and E(My) = 0, no linear 

combination of (I - M)y and My can be unbiased for l'X8 unless the term in 

(I- M)y is l'(I- M)y, as in (39). We therefore obtain the BLUE by 

choosing~ to minimize the variance of (39), which is 

v = l'(I- M)V(I- M)l + 2l'(I- M)VK~ + ~·MVM~ . (40) 
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This leads to ~ = -(MVM)-MV(I - M)l and so letting l' be successive rows 

of I givest from (39) 

BLUE = (I - M)(I - VK(MVK)-M]y. (41) 

There are many equivalent forms of this result. Pukelsheim (1974) 

develops (41) wholly in terms of (KVM)+ rather than (MVM) and so has, 

equivalent to an expression in Albert (1967) 

BLUE.= (I- M)[I- VK(MVM)+M]y. 

Pukelsheim then observes that for any matrix S 

and so he has 

+ BLUE= (I- M)[I- VK(MVK) ]y . 

+ Puntanen and Styan (1989) use H = I - M = XX and so have (42) as 

BLUE= Hy- HVK(MVM)+y 

= OLSE - BVM(MVM)+y 

(42) 

(43) 

(44) 

(45) 

One can also observe that since Vis non-negative definite, V = LL', and so 

on applying (A4), 

(46) 

Hence from ( 41) 

BLUE= [I - VK(MVM)-M]y . (47) 

Moreover, on substituting (46), used with (MVM)- different from (MVK)-, into 

the last M of VM(MVM)-M occurring in (47) gives 

VM(MVK) M = VM(MVM) -MVM(MVM) ... M 

= VM(MVM)"'M 

and so BLUE is invariant to whatever value is used for (MVM)-. Similar 

arguments yield 

var(BLUE) = V - VK(MVM)-MV 

and, with MX = 0, using (47) 

E(BLUE) = XP - VK(MVM)-MXP = XP . 
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4. EQUALITY OF BLUE TO a(V-) MID TO OLSE 

We have three theorems connecting BLUE for singular V to m(V-) and to 

OLSE. 

Theorem 1. BLUE = m(V-) if and only if VV X= X. 

The sufficiency part of this theorem shows that the general form of 

BLUE in Section 3.3 reduces to the BLUE in Section 3.2 when VV X= X. An 

early proof of sufficiency is due to Rao and Mitra (1971), and of necessity 

to Pukelsheim (1974). We offer new proofs that are shorter than theirs. 

Proof. 

First, define 

and so observe that 

+ QK = Q(I - XX ) = Q = KQ, using the symmetry of Q and K, 

= KQK because KQK = K2 Q = KQ. 

Hence 

( 48) 

Proof of sufficiency starts with VV-X = X. Then in (48) 

i.e., Q is a generalized inverse of KVK. Hence 

BLUE= y- VK(MVK)-Ky 

= y - VKQKy, from (KVK) = Q 

= y - VQy, because Q = KQK 

= y- y + X(X'V-X)-X'V-y, from Lemma A4, 

= X(X'V-X)-X'V-y 

= m(V-) of (36) • 

Thus is sufficiency established. 



-13-

For necessity, we show that a(V+) = BLUE implies VV+X =X, whereupon 

VV-X = X and a(V+) = a(V-) and so, in general, m(V-) = BLUE implies VV X = 

X. Therefore we start with 

(49) 

For convenience define T (different from the Ts of Sections 1.3 and 3.1) as 

T = T' = M(MVK) M 

and then, on applying Lemma AS to (49), get 

X(X'V+X)-X'V+V = V- VTV 

Pre-multiplying (50) by X'V+ gives 

which is 

Therefore 

X'V+VTV = 0 and so VTVV+X = 0 . 

+ 
Post-multiplying (50) by V X, 

and using (51) gives 

(50) 

(51) 

(52) 

But a standard result based on (A4) is that the left-hand side of (52) is 

X; and so X = VV+X, and hence, as in Lemma A4, X = VV-X. 

Corollary 

for V = V + XX' . 
p 

This is the form of BLUE given by Rao and Mitra (1971). 

Proof. One only needs to show that V V X = X . Since 
p p 

Q.E.D. 
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(53) 

Since each of the two terms in (53) is n.n.d., their sum is null only if 

each term is null. Therefore (I-V V-)XX'(I- V V-)' = 0 and so, 
p p p p 

because all matrices are real in this context, (I-V V-)X = 0, i.e., V V-X =X. 
p p p p 

Q.E.D. 

Theorem 2. + BLUE = OLSE = XX y if and only if VX = XQ for some Q. 

This result is due to Zyskind (1967) as part of a series of equivalent 

results of which this is but one form. 

Proof. If VX = XQ 

= MV because MX = 0 

= VM because HVM is symmetric, and hence so is MY . 

Therefore HVM = (I - M)VH = 0 and so in (45) BLUE = OLSE. Thus is suffi-

ciency established. 

Proving necessity begins with BLUE = OLSE: 

y - VM( KVM)-My = y - My V y . 

Therefore [VM(MVM)-M- M]y = 0 V y. Hence, by Lemma AS, [VH(MVK)-M- M]V = 

0. Therefore VM(MVM) MV • MV = VM, the last equality arising from the 

symmetry of VM(MVM)-MV. Hence, with MY= VM and M being I - XX+, 

which yields XX+VX = VXX+X = VX; i.e., VX = XX+VX = XQ for Q = X+VX. 

Q.E.D. 
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Theorem 3. m(V+) = OLSE if and only if m(V+) = BLUE and OLSE = BLUE; in 

which case VV-X = X and VX = XQ for some Q. 

Proof . Sufficiency is obvious: if m(V+) and OLSE each equal BLUE then 

they equal each other. Proving necessity starts with m(V+) = OLSE, i.e., 

(54) 

Applying Lemma AS to (54) gives 

and pre-multiplying this by X' and post-multiplying it by V+X gives 

(55) 

Then because X(X'V+X)-X'V+X = X, (55) reduces to X'X = X'VV+X. Therefore 

X'X- X'VV+X = X'(I- VV+)X =[(I- VV+)XJ'((I- VV+)X] = 0, 

+ + and so (I - XX )V = 0, thus giving X = VV X and hence X= VV X. Thus 

m(V+) = OLSE implies X = vv-x which, as we have seen, 

Q.E.D. 
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5. m(V-) when VV X :J X 

It was shown in Section 3.2 that VV-X = X is sufficient for equations 

Vt = XO to be consistent for a solution for t, whatever the choice of 9. It 

is also a necessary condition. This is so because, since V is n.n.d. and 

so can be factored as V = L'L as used in (32), the consistency of Vt = XO 

means that X= L'Z for some z. Then, because V we 

have 

after using LL =I that comes from L having full row rank (see Lemma A3). 

Thus, VV X = X is a necessary and sufficient condition for equations 

Vt = XO to be consistent for a solution for t, for any 0; and m(V-) = BLUE 

follows. But there can be cases where there are some forms of V (without 

VV X equalling X) that lead to m(V-) = X(X'V-X)-X'V-y being the same as 

BLUE= [I- VM(MVM)-M)y of (47). This means for some 9 (or 9s), the 

equations Vt = XO have a solution for t without being consistent for every 

8; i.e., there can be a solution t = V XO for that 9 (or Os) without VV-X 

being X. We illustrate this possibility in an example, and then investi­

gate what form V must have. 

5.1 An example of VVX:JX 

Consider as an example (suggested by Baksalary, 1986) the case of 

[~ 
0 

:] X • [:] v = 1 and (56) 

0 
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where rank of V is r = 2. We use this to illustrate the possibility of 

being able, in some cases, to solve the Lagrange multiplier equations, (24) 

and (25), in the form t = V-X9 without having VV-X. Then m(V-) can be 

calculated, and in this example it is BLUE, even though VV-X is not X. 

Using (56), the equation Vt ~ X8 is 

t = e 1 
and o = e , (57) 

i.e., t 1 = t 2 = 0; and t 3 remains unspecified. On taking X't = X'l of (25) 

into account, it being It= Il for this example, i.e., t 1 + t 2 + t 3 = \1 + 

\ 2 + \ 3 , we have in conjunction with t 1 = t 2 = e = 0 of (57), the solution 

to Vt = X8 and X't = X'l as 

t' = (0 0 E\.] 
1 

and e = o . (58) 

Thus T'y = (E\i)y 3 is the BLUE of l'XB = (E\i)B, i.e., a= y 3. Clearly, 

this is correct, since y 3 has variance zero as seen from var(y) = V of 

(56). 

This solution has been derived without using any V . It is therefore 

not V X9 analogous to v-1xe of (26) in the non-singular V case. Neverthe-

less, it is possible in this example (and in others) to find certain forms 

of generalized inverse of V, to be denoted VN such that t'y is l'm(V-), 

analogous to (29) but with VVNX ¢ X. One possibility in the example is 

(59) 

for any a, b and c so long as a + b + c ¢ 0. For then, 

-1 
+ c) [0 0 a + b + c] 

= [0 0 E\] = t' of (58) • 
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.... 
Note, too, that VV X ~ X: 

N 

and hence VV X ~ X for every V-. Thus, although for the particular V of 

(59), we have t'y equalling m(v"') = l'X(X'v"'x)-X'V"'y, the latter is not 

.... 
invariant to any choice of generalized inverse of V used in place of V . 

"' Nevertheless, since in the particular case of V it is BLUE, we give the 

name pseudo-BLUE (P-BLUE) to m(V-) when VV-X ~ X, and proceed to find a 

general form for P-BLUE and then provide an answer to the question "When is 

P-BLUE equal to BLUE?". This demands finding what form V- must have, 

without VV-X = X, such that m(V-) is BLUE. 

5.2 Pseudo-BLUE: m(V-) when VV X ~ X 

Whenever it is possible to solve Vt = X9 and X't = X'A for t and some 

particular 9 or 9s (as in the preceding example), and when a V can be 

derived without VV-X equalling X, we call the resulting m(V-) a pseudo-BLUE 

(P-BLUE). We here derive a general form for P-BLUE. 

Since V is singular, there is no loss of generality (save for the use 

of permutation matrices) in partitioning V as 

V • [::] and similarly X • [::] , ( 60) 

where v1 has full row rank, the same rank as V. Hence 

v2 = KV1 for some K . (61) 

Then equations Vt = XO are, by (60), equivalent to the two equations v1t = 

x 1o and x2t = x 2o. Multiplying the first of these by K and subtracting the 

second yields, by (61), 

( 62) 
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But the absence of consistency means that KX 1 ¢ x2 and so (62) has a 

solution 8 = 0. 

In many cases, a solution can be found for t. Part of Vt = V8 is 

V1t = X18 which, with 8 = 0, is v1t = 0 and this, since v1 has full row 

rank, has solution t = (I - V~V1 )w for any w. Therefore, to satisfy X't 

= X'l of (25), we must choose w to satisfy 

( 63) 

Solving (63) for w and substituting into t gives 

(64) 

Now, for v11 non-singular, of rank the same as V, consider partition-

ing V as 

V= ( 65) 

with 

and 

Hence 

[I K'] 
v11K'J = o o . (66) 

As a result of (66), it is readily shown that (64) reduces to 

t = B'(X'B')-X'l for B = (-K I], with K = V2Vi(V1Vi)-l (67) 

the latter coming from (61). Thus (67) and 8 = 0 are a solution to (24) 

and (25) when VT = XO is not consistent for a solution in t for aJJ 9, and 

-1 
so VV X ¢ X, as is easily confirmed. Then (67) gives what we call P-BLUE, 

namely 

P-BLUE = X(BX)-By for B = [-K I J • 
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Example. 

Applying (60) and (61) to (56) gives 

K = [0 0], 

Therefore (67) is 

the same result as in (58). 

Verification of solution 

From (65), 

B = [0 0 1] and X'B' = 1 • 

v = [ v lll [ I K I ] • 

KVll 

Therefore from (67) and (69), Vt involves the product 

( 69) 

and so Vt = 0 = X9 for 9 = 0 of the solution. Thus (24) is satisfied. For 

(25) it will be found in using (66) to derive (67) from (64) that 

X'(I- V~V1 ) = [0 X'B'] . 

Hence equations (63) are 

(0 X'B'Jw = X'i, 

i.e., for w2 the appropriate sub-vector of w, 

X'B'w2 = X'i . 

Clearly, these are consistent. Therefore a solution is w2 = (X'B')-X'l, 

and so X'B'(X'B')-X'i = X'i. But from (67) X't = X'B'(X'B')-X'l and so X't 

= X'l, which is (25). Thus 9 = 0 and t of (67) satisfy (24) and (25). 
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5.3 When does P-BLUE have the form m(V-)? 

.... 
Section 5.1 illustrates the existence of a V such that P-BLUE of (68) 

equals m(v"'), but with XX-X¢ X; and the invariance properties of BLUE do 

... 
not apply. Nevertheless it is of interest to investigate when such a V 

exists and how it might be derived. 

Begin with the equality 

(70) 

Post-multiplication by X yields 

X(BX) -BX = X • 

But this holds if, and only if, BX and X have the same rank. Therefore 

rBX = rX is a necessary condition for (70) to be true. 

Assuming that rank condition, pre-multiplying (70) by x•v"' gives 

(71) 

Now, with V that follows (65), 

_ [I K'] VV= 
0 0 

and vv = [: :J. (72) 

Therefore, since from (A7) the general form of generalized inverse of V, Vg 

say, is 

(73) 

for any square P and Q of order N, using (72) in (73), together with B of 

(67) gives 

v8 = v- + [o B']P + Q[OB] (74) 

Now partition Pas P = [U' F']' and Q as Q = [R S] with F' and S each of 

order N x (N-r). Then (74) is 

Vg = V- + B'F + SB . ( 7 5) 
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Using this for V- in (71) gives 

X'(V- + B'F + SB)X(BX)-B • X'(V- + B'F + SB) . (76) 

Therefore when any F and S that satisfy (76) are used in Vg of (75), that 

Vg used as V- in A'X(X'V-X)-X'V- yields t' = A'X(BX)-B of (67). Then 

P-BLUE = X(BX)-By = X(X'VgX)-X'y&y (77) 

for Vg of (75). But (77) is not BLUE because VVgX #X for Vg of (75). 

Example (continued) 

B = [0 0 1], X' = [1 1 1] and BX = 1 . 

Hence r(BX) = r(X) = 1. Since N = 3 and rV = 2, F' and S have the form 

F = [f 1 

[1 1 

This is 

which is 

1}{[~ 0 

1 

0 

= [ 1 1 

Using these in (76) gives 

~] + [~][fl f2 f3) + [:~[0 0 I] }[}1)-[0 0 1] 

1}{ [ 
0 

~] 1 + 
0 

1] = [ 1 1 

Hf~ f2 f3] + [:~[0 0 1}} 

Es.] • 
l. 

Therefore a solution is f 1 = -1, £2 = -1 and f 3 = 2, with s 1 , s 2 , s 3 being 

anything. Thus in (73) 

-1 
2] + [::][0 0 I] = [_~ -~ 

and for s 1 = a, s 2 = b and s 3 = c - 2 this is V of (59). 
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Special Case 1: when BX is scalar. 

It is easily shown that BX has order (N - r) x p. Therefore when, as 

in the preceding example, BX is scalar, N - r = 1 = p. Moreover, F and S 

then have order i x Nand N x 1, respectively. Therefore, on writing B, F, 

Sand X as b 1 , f 1 , sand x, respectively, (76) becomes 

x 1 V-xb 1 x 1 bf 1 xb 1 x' sb' xb 
=-~~- + + = x'V- + x'bf' + x'sb' . 

b'x b 1 x b'x 

This simplifies to 

which contains no s. 

with s = 0 (when N -

x 1 V-xb' 
=-~=- + f'xb 1 = x'V- + x'bf' 

h 1 x 

Then, when any f' satisfying (78) 

r = 1 = p)' i.e. , in 

vg = v + bf' 
' 

is used 

then that vg used in ( 77) yields t' = A.'xb'/b'x, but VVg ¢ X. 

exactly what happened in the example 

t' = (:\1 :\2 >3 l [}o 0 1] /1 = (0 0 EA] • 

in 

This 

(78) 

(75) 

is 

Special case 2: when BX(BX)-B = B, i.e., when BX and B have the same 

rank. Then (76) becomes 

X'(V- + B'F)X(BX)-B = X'(V- + B'F) ( 79) 

and if any F that satisfies (78) is used in (75) with S = 0, i.e., in 

r = V + B'F , (80) 

then that Vg used in (77) yields t' = A.'X(BX)-B of (67), but VVgX ¢X. 
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6. APPENDIX 

6.1 Generalized inverses 

The Moore-Penrose inverse of any non-null matrix A is the unique 

' A+ . f . matr1x sat1s y1ng 

AA+A. = A, A+AA+ A d h . b h AA+ d A+A . = an av1ng ot an symmetr1c . (Al) 

A generalized inverse, A, satisfies just the first condition in (Al): 

AAA=A. (A2) 

The following properties (e.g., Searle, 1982, p. 216) of a generalized 

inverse (X'X) of X'X are especially useful: 

(X'X)-, is a generalized inverse of X'X , (A3) 

(A4) 

and 

(A5) 

from which is is easily seen that 

(A6) 

with XX+ being symmetric and invariant to the choice of (X'X)-. 

Lemma AI. For A being a generalized inverse of A, so is 

(A7) 

"' for any P and Q. Furthermore, for A being some particular generalized 

inverse of A, say A , a suitable P and Q can always be found for (A7); 
g 

e.g., P =A and Q = A-AA (as is easily verified by substitution). 
g g 

6.2 Non-negative definite (n.n.d.) matrices 

If W is any n.n.d. (real) matrix of rank r then there exists (see 

Searle, 1982, Section 7.7) a matrix H of full row rank r such that 

-1 + -2 W = K'K, (K'K) exists and W = K'(KK') K (A8) 

Verification of W+ is easily established from (Al). 

If, for any real matrix B, 

BB' = 0 then B = 0. (A9) 
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6.3 Other pertinent results 

Lemma A2. If FSG = 0 for all S then either F = 0 or G 0. 

Proof. If G ¢ 0, there exists a vector ~ = Gu ¢ 0. Then 

FSG = 0 => FSGu = 0 => FS~ = 0 V S . 

For any non-null vector v takeS= v~·;~·~. Then 

FS~ = 0 => Fv~·~~~·~ = 0 => Fv = 0 V ~ ¢ 0, and so F = 0 

Similar arguments applied to G'S'F' = 0 when F ¢ 0 yield G = 0. 

Q.E.D. 

Lemma 3. For R of full row rank, RR = I for all R . 

Proof. - -1 -R = R'(RR') is a generalized inverse of R with RR I. There-

..., - -
fore I = RR = RR RR = RR I = RR . 

Q.E.D. 

Lemma A4. If VV X = X then 

(i) VV X = X for every V , 

(ii) X'V-X is invariant to V and for almost ally- (XB, V), 

(iii) VV y = y for every V and 

(iv) X'V-y is invariant to V . 

,.., 
Proof. Let V be a generalized inverse of V different from V . 

,.., -
(i) X= VV X = VV VV X= VV X. 

(ii) Write X' = (VV,..,X)' = X'V..,V because Vis symetric and if V,.., is 

-· not (although it can always be made so) then V is a generalized inverse 

of V anyway. Then 
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(iii) 0 =(I- VV-)V(I- VV-)' 

=(I- VV-)E[(y- X~)(y- ~)'](I -VV )' 

= E(zz') for z • (I- VV-)(y- ~). 

Therefore, since E(zz') = 0 implies, with probability 1.0, that z = 0, we 

have (I - VV-)(y- X~) = 0. But (I- VV-)X = 0. Therefore (I - VV-)y = 0 

and soy= VV-y and then y = VV-y = VV-VVy = VV-y. 

(iv) Using (iii) of proof is the same as that of (ii), but with its 

final X replaced by y. 

Q.E.D. 

Lemma A5. If Ky = 0 with probability unity, then KV = 0. 

Proof. Ky = 0 for almost all y implies var(Ky) = 0 => KVK' = 0. V = LL' as 

used in (32), and so KVK' = 0 => KL'LK' = 0 => KL' = 0 => KL'L = 0 => KV = 

o. 

Q.E.D. 
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