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Improved magnetic resonance (MR) data sampling, under-sampled image 

reconstruction, and dipole inversion can be achieved using physics-based deep 

learning methods. These methods leverage the physical models of MR imaging 

processes to improve the quality and accuracy of MR images. 

One approach to improving MR data sampling involves optimizing the k-space 

under-sampling pattern from fully sampled k-space dataset. A pioneering work is 

called LOUPE [1] which updates the probabilistic density function used to 

generate binary k-space sampling patterns, and uses a sigmoid approximation to 

sample from the learned density function. 

In addition, physics-based deep learning methods can be used for under-sampled 

image reconstruction by incorporating the imaging physical models into the deep 

learning architectures. Pioneering works, such as VarNet [2] and MoDL [3], have 

incorporated physical models by unrolling iterative reconstruction algorithms with 

deep learning-based regularizers. 

Moreover, physics-based deep learning has also improved the ill-posed problem of 



dipole inversion used to extract tissue susceptibility from magnetic field data. 

QSMnet [4] and DeepQSM [5] are two pioneering works that have tackled this 

problem by incorporating physical models either into the training loss function or 

through simulating the training dataset. 

This thesis contributes to physics-based deep learning for MRI by: 1) improving 

LOUPE using a straight-through (ST) estimator and extending the improved 

LOUPE to multi-echo and multi-contrast scenarios; 2) developing pulse sequence 

for prospective multi-echo gradient echo under-sampling and customized efficient 

multi-contrast sampling; 3) designing image reconstruction network architectures 

aggregating multi-echo and multi-contrast image features; 4) utilizing physical 

models into the loss function for test time fine-tuning to improve generalization; 5) 

solving Bayesian posterior estimation of dipole inversion problem using 

Variational Inference (VI) incorporating physical models. 
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CHAPTER 1. INTRODUCTION 

1.1 MRI Signal Model Basics 

An MRI system consists of several components, including magnet, radiofrequency 

(RF) and gradient coils and computer system. In MRI, images are produced using a 

pulse sequence that includes a specific order, timing, and duration of RF and gradient 

pulses, which are used to manipulate the magnetization of the hydrogen nuclei (also 

known as protons) in the body's water and fat molecules. Once placed inside a 

magnetic field, the magnetic moment of spins by the protons emits a signal that can be 

detected by the MRI system. 

The MRI signal model is based on two relaxation times, spin-lattice relaxation time 

(T1) and spin-spin relaxation time (T2). The Bloch equation governs the magnetic 

moment of spins (𝒎) inside the magnetic field (𝑩): 

𝑑𝒎

𝑑𝑡
=  𝛾 (𝒎 ×  𝑩)−

1

𝑇1(𝑚𝑧−𝑚0)𝒛̂
−

1

𝑇2(𝑚𝑥 𝒙̂+𝑚𝑦 𝒚̂)
        [1.1] 

where the magnetization 𝒎 precesses clockwise around the magnetic field 𝑩 with an 

angular velocity 𝝎 =  𝒎 ×  𝑩, which is known as the Larmor frequency. The 

Larmor frequency is proportional to the strength of the magnetic field 𝑩 and the 

gyromagnetic ratio 𝛾, which is a fundamental property of the nuclei being imaged. 

For example, the gyromagnetic ratio of hydrogen nuclei (protons) is approximately 
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42.58 MHz/T. The solutions to the Bloch equation that correspond to T2 for 

transverse magnetization (𝑚⊥) and T1 for the longitudinal component (𝑚𝑧) are given 

by: 

𝑚⊥  (𝑡) = 𝑚⊥  (0) 𝑒
−
𝑡
𝑇2                                               [1.2] 

𝑚𝑧  (𝑡) = 𝑚0 − (𝑚0  −  𝑚𝑧(0)) 𝑒
−
𝑡
𝑇1                                 [1.3] 

“Observed” or “effective” T2, denoted as T2*, takes into account both spin-spin 

relaxation (T2) and magnetic field inhomogeneities (T2’) caused by factors such as 

susceptibility effects from tissue interfaces, air-tissue interfaces, and magnetic field 

gradients: 

1

𝑇2∗
=
1

𝑇2′
+
1

𝑇2
.                                                 [1.4] 

Considering T2* decay, Gradient-echo (GRE) signal at time 𝑡 after gradient (𝑮(𝑡)) 

dephasing and refocus is: 

𝑠(𝑡) =  ∫𝑚(𝒓)𝑒
−

𝑡
𝑇2∗(𝒓)𝑒−2𝜋𝑖𝒌⋅𝒓𝑑3𝒓                        [1.5] 

where 𝒌 =
𝛾𝑮(𝑡)𝑡

2𝜋
 and 𝒓 is the location vector. Considering tissue magnetization as a 

collection of magnetic dipole moments, a unit dipole z-field affecting the spin 

precession rate is defined as: 

𝑑(𝒓) =
1

4𝜋

3 𝑐𝑜𝑠2 𝜃 − 1

𝑟3
.                                 [1.6] 
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where 𝜃 is the angle between 𝒓 and the main magnetic field 𝑩. Then the magnetic 

field (scaled to 𝑩𝟎) is the sum of contrbutions from all dipole moments: 

𝒃(𝒓) = µ0
4𝜋

 ∫
(3 cos2𝜃𝒓𝒓′ −  1)𝒎(𝒓

′)

|𝒓 −  𝒓′|3
𝑑3𝒓′ .                    [1.7] 

After Lorentz sphere correction, we get the following quantitative susceptibility 

mapping inverse problem [6] given measured field: 

𝒃(𝒓) = (𝜒 ∗ 𝑑)(𝒓).                                           [1.8] 

Field contribution to phase can be added to GRE signal equation: 

𝑠(𝑡) =  ∫𝑚(𝒓)𝑒−𝑖𝜔𝑏(𝒓)𝑡𝑒
−

𝑡
𝑇2∗(𝒓)𝑒−2𝜋𝑖𝒌⋅𝒓𝑑3𝒓                        [1.9] 

1.2 Summary of Contribution 

This thesis is focused on improving MR data sampling, under-sampled image 

reconstruction and quantitatively susceptibility mapping (QSM) using physics-based 

deep learning methods. 

1. LOUPE with Straight-Through (ST) Estimator (LOUPE-ST). In Chapter 2, 

we extended the LOUPE technique [7] for optimizing k-space under-sampling 

patterns. A binary stochastic sampling method together with an ST estimator to 

estimate the gradient of the threshold operation in a neural network was applied 

[7]. This approach led to better reconstruction performance compared to the 
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approximate sampling method used in LOUPE during training. Furthermore, the 

optimized sampling pattern could be applied to other reconstruction methods with 

similar success. 

2. Learned Acquisition and Reconstruction Optimization (LARO). In Chapter 3, 

we introduced a new framework call LARO [8, 9], which is designed to accelerate 

multi-echo gradient echo (mGRE) sequence for quantitative susceptibility 

mapping. LARO achieves this by optimizing a Cartesian multi-echo k-space 

sampling pattern extended from LOUPE-ST in Chapter 2. This optimized 

sampling pattern is then implemented in an mGRE sequence for prospective 

scans. LARO also incorporates a recurrent temporal feature fusion module, which 

captures signal redundancies along echoes. Experiments show LARO is robust on 

the test data with new pathologies and different sequence parameters. 

3. Multi-contrast Learned Acquisition and Reconstruction Optimization 

(mcLARO). In Chapter 4, we developed a new pulse sequence that contained an 

interleaved inversion recovery (IR) prepared single-echo acquisition, a multi-echo 

gradient echo acquisition and a T2 prepared single-echo acquisition. This allowed 

to acquire k-space data sensitive to T1, T2, T2* and magnetic susceptibility. A 

deep learning framework called mcLARO, extended from LARO in Chapter 3, 

was proposed to optimize both the multi-contrast k-space under-sampling pattern 

and the image reconstruction based on image feature fusion [10]. The prospective 
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study showed good agreement on regional T1, T2, T2* and QSM values by 

mcLARO (5:39 mins) compared to reference scans (40:03 mins in total). 

4. Fidelity Imposed Network Edit (FINE). In Chapter 5, we introduced a new 

method called FINE [11], which aims to improve deep learning image 

reconstruction by incorporating the physical model into the network for test time 

adaptation. By doing so, FINE reduces generalization errors in deep learning 

image reconstruction, leading to better results in tasks such as multiple sclerosis 

(MS) lesion and hemorrhage susceptibility in deep learning QSM. FINE is also 

robust to noise and adversarial attack in deep learning under-sampled MRI 

reconstruction. 

5. Hybrid Optimization Between Iterative and network fine-Tuning (HOBIT). 

In Chapter 6, we accelerated FINE from Chapter 5 by alternating direction method 

of multiplier (ADMM), which splits the time-consuming fidelity imposed network 

update into iterative reconstruction and network update subproblems alternatively 

in ADMM [12]. For the network update subproblem, only a subnet of the pre-

trained network is updated for further acceleration. Compared to FINE, HOBIT 

achieves both performance gain of reconstruction accuracy and vast reduction of 

computational time. 

6. Application of FINE to solve QSM from high-pass filtered phase (HPFP). In 
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Chapter 7, we applied FINE from Chapter 5 to tackle two common generalization 

issues that arise when using a pre-trained network to predict QSM from HPFP: a) 

data with unseen voxel sizes and b) data with unknown high-pass filters which 

may be different from training. A network fine-tuning step based on a high-pass 

filtering dipole convolution forward model is proposed to reduce generalization 

error of the pre-trained network [13]. A progressive Unet architecture is proposed 

to improve prediction accuracy without increasing fine-tuning computational cost. 

The proposed method shows improved robustness compared to the pre-trained 

network without fine-tuning when test dataset deviates from the training. 

7. Probabilistic Dipole Inversion (PDI). In Chapter 8, A learning-based posterior 

distribution estimation method, PDI, is proposed to solve QSM with uncertainty 

estimation [14, 15]. In PDI, a deep convolutional neural network (CNN) is used to 

represent the multivariate Gaussian distribution as the approximate posterior 

distribution of susceptibility given the input measured field. Such CNN is first 

trained on healthy subjects via posterior density estimation, then domain adapted 

to patient data in an unsupervised fashion using variational inference (VI). Based 

on our experiments, PDI provides additional uncertainty estimation compared to 

the conventional maximum-a-posteriori (MAP) approach, while addressing the 

potential issue of the pre-trained CNN when test data deviates from training. 
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CHAPTER 2. LOUPE-ST: EXTENDING LOUPE FOR K-SPACE UNDER-

SAMPLING PATTERN OPTIMIZATIN IN MULTI-COIL MRI 

2.1 Abstract 

In this chapter, we present LOUPE-ST [7], an extension of LOUPE [1] for k-space 

under-sampling pattern optimization in MRI. A binary stochastic sampling method 

together with an ST estimator to estimate the gradient of the threshold operation in a 

neural network was applied. This approach led to better reconstruction performance 

compared to the approximate sampling method used in LOUPE during training. 

Furthermore, the optimized sampling pattern could be applied to other reconstruction 

methods with similar success. 

2.2 Introduction 

Parallel imaging (PI) [16, 17] and Compressed Sensing MRI (CS-MRI) [18] are 

widely used technique for acquiring and reconstructing under-sampled k-space data 

thereby shortening scanning times in MRI. CS-MRI is a computational technique that 

suppresses incoherent noise-like artifacts introduced by random under-sampling, often 

via a regularized regression strategy. Combining CS-MRI with PI promises to make 

MRI much more accessible and affordable. Therefore, this has been an intense area of 

research in the past decade [19, 20]. One major task in PI CS-MRI is designing a 

random under-sampling pattern, conventionally controlled by a variable-density 
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probabilistic density function (PDF). However, the design of the ‘optimal’ under-

sampling pattern remains an open problem for which heuristic solutions have been 

proposed. For example, [21] generated the sampling pattern based on the power 

spectrum of an existing reference dataset; [22] combined experimental design with the 

constrained Cramer-Rao bound to generate the context-specific sampling pattern; [23] 

designed a parameter-free greedy pattern selection method to find a sampling pattern 

that performed well on average for the MRI data in a training set. 

Recently, with the success of learning based k-space reconstruction methods [2, 3, 11, 

24], a data-driven machine learning based approach called LOUPE [1] was proposed 

as a principled and practical solution for optimizing the under-sampling pattern in CS-

MRI. In LOUPE, fully sampled k-space data was simulated from magnitude MR 

images and retrospective under-sampling was deployed on the simulated k-space data. 

A sampling pattern optimization network and a modified  U-Net [25] as the under-

sampled image reconstruction network were trained together in LOUPE to optimize 

both the k-space under-sampling pattern and reconstruction process. In the sampling 

pattern optimization network, one sigmoid operation was used to map the learnable 

weights into probability values, and a second sigmoid operation was used to 

approximate the non-differentiable step function for stochastic sampling, as the 

gradient needed to be back-propagated through such layer to update the learnable 

weights. After training, both optimal sampling pattern and reconstruction network 
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were obtained. For a detailed description of LOUPE we refer the reader to [1]. 

In this work, we extended LOUPE in three ways. Firstly, in-house multi-coil in-vivo 

fully sampled T2-weighted k-space data from MR scanner was used to learn the 

optimal sampling pattern and reconstruction network. Secondly, modified U-Net [25] 

as the reconstruction network in LOUPE was extended to a modified unrolled 

reconstruction network with learned regularization term in order to reconstruct multi-

coil data in PI with proper data consistency and reduce the dependency on training 

data when training cases were scarce. Thirdly, approximate stochastic sampling layer 

was replaced by a binary stochastic sampling layer with Straight-Through (ST) 

estimator [26], which was used to avoid zero gradients when back-propagating to this 

layer. Fully sampled data was acquired in healthy subjects. Under-sampled data was 

generated by retrospective under-sampling using various sampling patterns. 

Reconstructions were performed using different methods and compared. 

2.3 Method 

In PI CS-MRI, given an under-sampling pattern and the corresponding acquired k-

space data, a reconstructed image 𝑥̂ is obtained via minimizing the following 

objective function: 

𝑥̂ = argmin
𝑥

∑‖𝑈𝐹𝑆𝑗𝑥 − 𝑏𝑗‖2
2
+ 𝑅(𝑥)                              [2.1]

𝑁𝑐

𝑗
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where 𝑥 the MR image to reconstruct, 𝑆𝑗 the coil sensitivity map of j-th coil, 𝑁𝑐 the 

number of receiver coils, 𝐹 the Fourier transform, 𝑈 the k-space under-sampling 

pattern, and 𝑏𝑗 the acquired under-sampled k-space data of the j-th coil. 𝑅(𝑥) is a 

regularization term, such as Total Variation (TV) [27] or wavelet [28]. The 

minimization in Eq. 2.1 is performed using iterative solvers, such as the Quasi-

Newton method [29], the alternating direction method of multipliers (ADMM) [30] or 

the primal-dual method [31]. Eq. 2.1 can also be mimicked by learning a 

parameterized mapping such as neural network from input {𝑏𝑗} to output 𝑥̂. We 

denote the mapping {𝑏𝑗} → 𝑥̂ using either iterative solvers or deep neural networks 

as 𝑥̂ = 𝒜({𝑏𝑗}). 

Our goal is to obtain an optimal under-sampling pattern 𝑈̂ for a fixed under-sampling 

ratio 𝛾 from 𝑁 fully sampled data through retrospective under-sampling. The 

mathematical formulation of this problem is: 

min
𝑈

1

𝑁
∑𝐿(𝑥𝑖

∗,𝑥𝑖̂(𝑈))

𝑁

𝑖=1

, subject to 𝑈 ∈ 𝛺, 𝑥𝑖̂(𝑈) = 𝒜({𝑈𝑏𝑖𝑗
∗ })             [2.2] 

where 𝑥𝑖
∗ the i-th MR image reconstructed by direct inverse Fourier transform from 

fully sampled k-space data {𝑏𝑖𝑗
∗ }, 𝐿(⋅,⋅) the loss function to measure the similarity 

between reconstructed image 𝑥𝑖̂(𝑈) and fully sampled label 𝑥𝑖
∗, 𝛺 the constraint set 

of 𝑈 to define how 𝑈 is generated with a fixed under-sampling ratio 𝛾. The bilevel 

optimization problem [32] of Eq. 2.2 was solved in LOUPE [1] via jointly optimizing 
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a modified U-Net [25] as 𝒜(⋅) and an approximate stochastic sampling process 

as 𝛺 on a large volume of simulated k-space data from magnitude MR images. 

However, for in-vivo k-space data with multi-coil acquisition as in PI, both U-Net 

architecture for reconstruction and approximate stochastic sampling for pattern 

generation could be sub-optimal. Specifically, due to limited training size of in-vivo 

data and no k-space consistency imposed in U-Net, inferior reconstructions could 

happen in test and even training datasets. And the approximate stochastic sampling 

process generated fractional rather than 0–1 binary patterns during training, which 

might not work well during test as binary patterns should be used for realistic k-space 

sampling. In view of the above, we extend and improve LOUPE in terms of both 

reconstruction mapping 𝒜(⋅) and sampling pattern’s generating process 𝛺 when 

working on in-vivo multi-coil k-space data in this work. 

2.3.1 Unrolled Reconstruction Network 

A modified residual U-Net [25] was used as the reconstruction network in LOUPE [1] 

to map from the zero-filled k-space reconstruction input to the fully-sampled k-space 

reconstruction output. U-Net works fine with simulated k-space reconstruction when 

enough training data of magnitude MR images are given, but as for in-vivo multi-coil 

k-space data, training cases are usually scarce, since fully-sampled scans are time 

consuming and as a result, only a few fully-sampled cases can be acquired. 
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To reduce the dependency on training dataset and improve the data consistency of 

deep learning reconstructed images, combining neural network block for the 

regularization term in Eq. 2.1 with iterative optimization scheme to solve Eq. 2.1 has 

been explored in recent years [1, 13, 24], which are called “unrolled reconstruction 

networks” in general. Prior works showed that such unrolled networks performed well 

for multi-coil k-space reconstruction task by means of inserting measured k-space 

data into the network architecture to solve Eq. 2.1 with a learning-based 

regularization. In light of the success of such unrolled reconstruction networks, we 

apply a modified MoDL [3] as the reconstruction network in this work. MoDL 

unrolled the quasi-Newton optimization scheme to solve Eq. 2.1 with a neural 

network based denoiser as the 𝐿2 regularization term 𝑅(𝑥), and conjugate gradient 

(CG) descent block was applied in MoDL architecture to solve the 𝐿2 regularized 

problem. Besides, we will show that such unrolled network architecture also works as 

the skip connections for sampling pattern weights’ updating as the generated pattern is 

connected to each intermediate CG block to perform 𝐿2 regularized data consistency 

(Figure 2.1). 

2.3.2 ST Estimator for Binary Pattern 

In LOUPE , a probabilistic pattern 𝑃𝑚 was defined as 𝑃𝑚 =
1

1+𝑒−𝑎⋅𝑤𝑚
 with hyper-

parameter 𝑎 and trainable weights 𝑤𝑚. The binary k-space sampling pattern 𝑈 was 

assumed to follow a Bernoulli distribution 𝐵𝑒𝑟(𝑃𝑚) independently on each k-space 

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#ref-CR1
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#ref-CR13
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#ref-CR24
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig1
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location. 𝑈 was generated from 𝑃𝑚 as 𝑈 = 𝟏𝑧<𝑃𝑚 , where 𝑧 ∼ 𝑈[0,1]dim(𝑃𝑚)  

and 𝟏𝑥 the pointwise indicator function on the truth values of 𝑥. However, indicator 

function 𝟏𝑥 has zero gradient almost everywhere when back-propagating through it. 

LOUPE addressed this issue by approximating 𝟏𝑧<𝑃𝑚  using another sigmoid 

function: 𝑈 ≈
1

1+𝑒−𝑏⋅
(𝑃𝑚−𝑧)

 with hyper-parameter 𝑏. 

Although the gradient issue was solved in LOUPE, 𝑈 was approximated as a fraction 

between [0, 1] on each k-space location instead of the binary pattern deployed in both 

test phase and realistic MR scan. As a result, binary sampling patterns generated in 

test phase could yield inferior performance due to such mismatch with training phase. 

To address this issue, binary patterns are also needed during training phase, at the 

same time gradient back-propagating through binary sampling layer should be 

properly handled. Such binary pattern generation layer can be regarded as the layer 

with stochastic neurons in deep learning, and several methods have been proposed to 

address its back-propagation [26, 33]. Here we use straight through (ST) estimator 

[26] in the stochastic sampling layer to generate binary pattern 𝑈 meanwhile 

addressing the zero gradient issue during back-propagation. Based on one variant of 

ST estimator, 𝑈 is set as 𝟏𝑧<𝑃𝑚  during forward pass. When back-propagating through 

the stochastic sampling layer, an ST estimator replaces the derivative factor 
𝑑𝟏𝑧<𝑃𝑚
𝑑𝑤𝑚

=

0 with the following: 
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𝑑𝟏𝑧<𝑃𝑚
𝑑𝑤𝑚

=
𝑑𝑃𝑚
𝑑𝑤𝑚

                                             [2.3] 

In other words, indicator function in the stochastic layer is applied at forward pass but 

treated as identity function during back-propagation. This ST estimator allows the 

network to make a yes/no decision, allowing it to picking up the top 𝛾 fraction of k-

space locations most important for our task. 

2.3.3 Network Architecture 

Figure 2.1 shows the proposed network architecture consisting of two sub-networks: 

one unrolled reconstruction network and one sampling pattern learning network. 

In the sampling pattern learning network (Figure 2.1(b)), Renormalize(⋅) is a linear 

  

Figure 2.1. Proposed network architecture consisting of a sampling pattern learning 

network and a K-rolled reconstruction network. 

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig1
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scaling operation to make sure the mean value of probabilistic pattern is equal to the 

desired under-sampling ratio 𝛾. The binary pattern 𝑈 is sampled at every forward pass 

in the network and once generated, it is used to retrospectively under-sample the fully 

sampled multi-coil k-space data. 

The deep quasi-Newton network (MoDL) as the unrolled reconstruction network 

architecture is illustrated in Figure 2.1(a). In deep quasi-Newton, Denoiser + Data 

consistency blocks are replicated K times to mimic K quasi-Newton outer loops of 

solving Eq. 2.1 in which a neural network denoiser for 𝑅(𝑥) is applied. Five 

convolutional layers with skip connection [34] and instance normalization [35] are 

used as the denoiser and the weights are shared among blocks. The binary pattern 𝑈 is 

used to generate zero-filled reconstruction 𝑥0 as the input of reconstruction network 

and connected to all the data consistency sub-blocks to deploy regularized 

optimization, which also works as the skip connection to benefit the training of 

pattern weights 𝑤𝑚. 

2.4 Results 

2.4.1 Dataset and Implementations 

Data Acquisition and Processing. Fully sampled k-space data were acquired in 6 

healthy subjects (5 males and 1 female; age: 30±6.6 years) using a sagittal T2-

weighted variable flip angle 3D fast spin echo sequence on a 3T GE scanner with a 

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig1
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Equ1
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32-channel head coil. Imaging parameters were: 256×256×192 imaging 

matrix, 1mm3 isotropic resolution. Coil sensitivity maps of each axial slice were 

calculated with ESPIRiT [36] using a 25×25×32 auto-calibration k-space region. 

From the fully sampled data, a combined single coil image using the same coil 

sensitivity maps was computed to provide the ground truth label for both sampling 

pattern learning and reconstruction performance comparison. The central 100 slices of 

each subject were extracted for the training (300 slices), validation (100 slices) and 

test (200 slices) dataset. In addition, k-space under-sampling was performed 

retrospectively in the ky-kz plane for all the following experiments. 

Training Parameters. In the sampling pattern learning network, 𝑤𝑚 were initialized 

randomly, the slope factor 𝑎 = 0.25 and the under-sampling ratio 𝛾 = 10%. The 

central 25×25 k-space region remained fully sampled for each pattern. For the 

baseline LOUPE, a second slope factor 𝑏 = 12 was used to approximate the binary 

sampling. The sampling pattern learning networks using binary sampling with ST 

estimator and approximated sampling were denoted as BS (binary sampling) and AS 

(approximated sampling) in the following experiments. In the unrolled reconstruction 

network, 𝐾 = 5 replicated blocks were applied and the denoiser was initialized 

randomly. For the baseline LOUPE, a residual U-Net was applied. All of the learnable 

parameters in Figure 2.1 were trained simultaneously using the loss 

function: 
1

𝑁
∑ ∑ ‖𝑥𝑖

𝑘− 𝑥𝑖
∗‖
1

𝐾
𝑘=1

𝑁
𝑖=1 , where 𝑥𝑖

∗ the i-th ground truth label in the training 

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig1
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dataset, 𝑥𝑖
𝑘 the k-th intermediate reconstruction (𝐾 = 1 in U-Net). Stochastic 

optimization with batch size 1 and Adam optimizer (initial learning rate: 10−3) [37] 

was used to minimize the loss function. The number of epochs was 200. The whole 

training and inference procedures were implemented in PyTorch with Python version 

3.7.3 on an RTX 2080Ti GPU. 

2.4.2 Comparison with LOUPE 

Figure 2.2 shows the reconstruction results from one of the test subjects to 

demonstrate the performance improvement of the extended LOUPE over vanilla 

LOUPE. Four combinations of reconstruction network and sampling pattern 

optimization network were tested and compared. Binary sampling patterns were 

generated during test phase. From Figure 2.2, MoDL provided better reconstruction 

results compared to U-Net, while for both U-Net and MoDL reconstruction networks, 

BS (binary sampling) gave less noisy reconstructions than AS (approximate sampling) 

during test phase. Quantitative comparisons in terms of PSNR (peak signal-to-noise 

ratio) and SSIM (structural similarity index measure [38]) are shown in Table 2.1, 

where MoDL + BS had the best performance. 

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig2
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Tab1
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2.4.3 Comparison with Other Pattern 

To compare the learned sampling pattern (‘learned pattern’ in Figure 2.3, generated 

from MoDL + BS) with the manually designed one with 10% ratio, a variable 

density (VD) sampling pattern following a probabilistic density function whose 

formula is a polynomial of the radius in k-space with tunable parameters was 

generated (‘VD pattern’ in Figure 2.3). ESPIRiT [36] and TGV [39] as two 

representative iterative methods for solving PI CS-MRI were also deployed using 

 

  

Figure 2.2. Reconstruction results on one test slice by four combinations of reconstruction 

network and sampling pattern optimization network with 10% under-sampling ratio. First 

row: reconstruction results; second row: 5× absolute error maps (window level: [0, 0.5]). 

MoDL + BS equipped with ST estimator had the best performance.  

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig3
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig3
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both sampling patterns, and the corresponding reconstruction results are shown in 

Figure 2.3. For each reconstruction method, the learned sampling pattern captured 

better image depictions with lower global errors than VD pattern and the structural 

details as zoomed in were also sharper with the learned sampling pattern. PSNR and 

SSIM in Table 2.2 shows consistently improved performance of the learned sampling 

pattern over the VD pattern for each reconstruction method. 

https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Fig3
https://link.springer.com/chapter/10.1007/978-3-030-61598-7_9#Tab2
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Figure 2.3. Reconstruction results on another test slice using VD and learned sampling 

patterns with three different reconstruction methods. First two rows: reconstruction 
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results; last two rows: corresponding 5× absolute error maps (window level:[0, 0.5]). For 

each reconstruction method, the learned sampling pattern produced lower global errors 

and sharper structural details than VD sampling pattern.  
Table 2.1. Quantitative results of section 2.4.2 

 PSNR (dB) SSIM 

U-Net+AS 32.5 ± 1.0 0.885 ± 0.016 

U-Net+BS 33.0 ± 0.6 0.898 ± 0.012 

MoDL+AS 41.3 ± 1.2 0.963 ± 0.015 

MoDL+BS 42.6± 1.1 0.968 ± 0.012 
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2.5 Discussion and Conclusion 

In this work, LOUPE for optimizing the k-space sampling pattern in MRI was 

extended by training on in-vivo multi-coil k-space data and using the unrolled 

network for under-sampled reconstruction and binary stochastic sampling with ST 

estimator for sampling pattern optimization. Experimental results show that the 

extended LOUPE worked better than vanilla LOUPE on in-vivo k-space data and the 

learned sampling pattern also performed well on other reconstruction methods. Future 

work includes implementing the learned sampling pattern in the pulse sequence to 

optimize the k-space data acquisition process prospectively. 

Table 2.2. Quantitative results of section 2.4.3 

Pattern Method PSNR (dB) SSIM 

VD ESPIRiT 37.5 ± 1.0 0.920 ± 0.016 

TGV 40.1 ± 0.9 0.952 ± 0.014 

MoDL 40.4 ± 0.9 0.963 ± 0.010 

Learned ESPIRiT 39.5 ± 1.1 0.932 ± 0.018 

TGV 42.5 ± 1.1 0.959 ± 0.016 

MoDL 42.6 ± 1.1 0.968 ± 0.012 
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CHAPTER 3. LARO: LEARNED ACQUISITION AND 

RECONSTRUCTION OPTIMIZATION TO ACCELERATE 

QUANTITATIVE SUSCEPTIBILITY MAPPING 

3.1 Abstract 

Quantitative susceptibility mapping (QSM) involves acquisition and reconstruction of 

a series of images at multi-echo time points to estimate tissue field, which prolongs 

scan time and requires specific reconstruction technique. In this paper, we present our 

new framework, called Learned Acquisition and Reconstruction Optimization 

(LARO), which aims to accelerate the multi-echo gradient echo (mGRE) pulse 

sequence for QSM. Our approach involves optimizing a Cartesian multi-echo k-space 

sampling pattern with a deep reconstruction network. Next, this optimized sampling 

pattern was implemented in an mGRE sequence using Cartesian fan-beam k-space 

segmenting and ordering for prospective scans. Furthermore, we propose to insert a 

recurrent temporal feature fusion module into the reconstruction network to capture 

signal redundancies along echo time. Our ablation studies show that both the 

optimized sampling pattern and proposed reconstruction strategy help improve the 

quality of the multi-echo image reconstructions. Generalization experiments show that 

LARO is robust on the test data with new pathologies and different sequence 

parameters. 
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3.2 Introduction 

Quantitative magnetic resonance imaging (MRI) provides biomarkers for clinical 

assessment of diverse diseases, including T1 and T2 relaxation time [40, 41], fat 

fraction [42], quantitative susceptibility mapping (QSM) [6], etc. For QSM, a multi-

echo gradient echo (mGRE) pulse sequence is used to acquire signals at different echo 

times. A tissue-induced local magnetic field map can be obtained by fitting the 

acquired complex multi-echo signals [43, 44]. Then, a tissue susceptibility map can be 

computed  using an inverse problem solver, such as regularized dipole inversion 

[45]. 

For QSM, the range of echo times needs to be large enough to cover both small and 

large susceptibilities in tissue [46], such as in the application of QSM in multiple 

sclerosis (MS), where QSM has been shown to be sensitive to myelin content as well 

as iron [46], both of which are modified in MS. However, limited scan time in clinics 

only allows for mGRE with a compromised spatial resolution, making visualization of 

smaller MS lesion more challenging. Overcoming this compromise is a major 

motivation for this work.   

The significantly increased scan time of mGRE sequence can be partly overcome 

using classical acceleration techniques such as Parallel imaging (PI) [16, 17], 

compressed sensing (CS) [18], or their combination (PI-CS) [19, 20]. Recently, deep 
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learning has been used to optimize k-space sampling patterns from training data, such 

as in LOUPE [1] and its extension LOUPE-ST [7], experimental design with the 

constrained Cramer-Rao bound (OEDIPUS) [22] and greedy pattern selection [23]. 

Building on these prior works, we propose here to learn an optimal sampling pattern 

to accelerate QSM acquisition and improve reconstruction quality.  

Reconstruction from under-sampled measurements can be solved using regularization 

to exploit signal redundancies, such as low-rank and/or sparsity constraints [47-49]. 

More recently, convolutional neural networks have been proposed for compressed 

sensing reconstruction. One popular neural network technique involves implementing 

the unrolled iterations of an optimization process, coupled with a learned regularizer, 

as in MoDL [50] and VarNet [50]. These architectural designs have been applied to 

single-echo image reconstruction, and extended to dynamic image sequence 

reconstruction via cascaded [51] and recurrent networks [52]. Recently QSM 

acquisition was accelerated using 2D incoherent Cartesian under-sampling and deep 

neural network reconstruction with a variable density sampling pattern manually 

designed and fixed across echoes [53].  

We propose Learned Acquisition and Reconstruction Optimization (LARO) to further 

optimize the sampling pattern across echoes by inferring the temporal variation 

through adding a temporal dimension to LOUPE-ST [7] for the multi-echo case. 

Images are reconstructed accordingly using an unrolled reconstruction network based 



26 

 

on alternating direction method of multipliers (ADMM) [30] to capture the signal 

evolution and compensate the aliasing patterns of mGRE images with a temporal 

feature fusion module.  

In this study, the learning based acquisition acceleration is not used to increase the 

spatial resolution but to instead accelerate the clinical protocol. For LARO training 

and testing experiments, we used retrospective under-sampling on fully sampled k-

space data either simulated from the existing clinical protocol by taking inverse 

Fourier transform of the clinical mGRE images, or directly acquired from the scanner; 

the fully sampled k-space data served as ground truth for LARO sampling pattern 

optimization and under-sampled reconstruction. The optimized sampling pattern was 

then implemented in a modified mGRE sequence such that prospectively under-

sampled data could be acquired and reconstructed with LARO. This work is extended 

from our conference paper [8] where preliminary retrospective results were shown as 

a proof of concept of LARO. 

3.3 Theory 

In QSM data acquisition, multi-echo k-space sampling with multiple receiver coils is 

modeled as: 

𝑏𝑗𝑘 = 𝑈𝑗𝐹𝐸𝑘𝑠𝑗 +𝑛𝑗𝑘 ,                                                       [3.1] 

where 𝑏𝑗𝑘  is the measured k-space data of the k-th receiver coil at the j-th echo time, 
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with 𝑁𝐶 receiver coils and 𝑁𝑇 echo times, 𝑈𝑗 is the k-space under-sampling pattern 

at the j-th echo time, 𝐹 is the Fourier transform, 𝐸𝑘  is the sensitivity map of the k-th 

coil, 𝑠𝑗 is the complex image of the j-th coil to be reconstructed, and 𝑛𝑗𝑘  is the 

acquisition noise, assumed to be Gaussian. 

Having acquired 𝑏𝑗𝑘  with fixed 𝑈𝑗, we aim at reconstructing all 𝑠𝑗 simultaneously 

with a cross-echo regularization loss 𝑅({𝑠𝑗}). Based on Eq. 3.1, a solution {𝑠̂𝑗} can 

be obtained by solving the following optimization 

{𝑠̂𝑗} = argmin
{𝑠𝑗 }

E({𝑠𝑗}) = argmin
{𝑠𝑗}

∑∑‖𝑈𝑗𝐹𝐸𝑘𝑠𝑗  −  𝑏𝑗𝑘‖2
2  +  𝑅({𝑠𝑗})

𝑁𝐶

𝑘=1

𝑁𝑇

𝑗=1

.  [3.2] 

We denote the iterative reconstruction method solving Eq. 3.2 as {𝑠̂𝑗} =

𝐴({𝑈𝑗}; {𝑏𝑗𝑘}). With this notation, the sampling pattern optimization problem consists 

of finding, for a given under-sampling ratio 𝛾 and a given set of fully sampled 

training data {𝑏𝑗𝑘
𝑖 , 𝑠𝑗

𝑖}
𝑖=1…𝑁

, the sampling pattern {𝑈̂𝑗} that solves: 

{𝑈̂𝑗}  = argmin
{𝑈𝑗 }

 𝐺({𝑈𝑗}) = argmin
{𝑈𝑗 }

1

𝑁
∑𝐿({𝑠̂𝑗

𝑖}, {𝑠𝑗
𝑖})

𝑁

𝑖=1

, 

subject to {𝑠̂𝑗
𝑖} = 𝐴({𝑈𝑗}; {𝑈𝑗𝑏𝑗𝑘

𝑖 }) 𝑎𝑛𝑑 𝑈𝑗̅ = 𝛾 for all𝑖 and 𝑗,                            [3.3] 
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where 𝑁 is the total number of samples in the training dataset, {𝑠𝑗
𝑖} is the 𝑖-th fully 

sampled multi-echo image, {𝑠̂𝑗
𝑖} is the 𝑖-th reconstructed under-sampled multi-echo 

obtained using solver 𝐴({𝑈𝑗}; {𝑈𝑗𝑏𝑗𝑘
𝑖 }) and 𝐿 is the metric to quantify difference 

between {𝑠̂𝑗
𝑖} and {𝑠𝑗

𝑖 }, such as the 𝐿1 loss. In the following section, we will propose 

a unified framework called LARO (Learned Acquisition and Reconstruction 

Optimization) to tackle both Eq. 3.2 and 3.3 using deep learning techniques. 

  

Figure 3.1. Network architecture of LARO. (a): deep ADMM was used as the backbone for 

under-sampled k-space reconstruction. (b): a sampling pattern optimization (SPO) module 

was used to learn the optimal k-space under-sampling pattern. (c): a temporal feature 

fusion (TFF) module was inserted into deep ADMM to capture the signal evolution along 

echoes. 
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3.3.1 Sampling pattern optimization (SPO) 

For k-space sampling pattern optimization Eq. 3.3, we extend the previously proposed 

LOUPE-ST method [7] to the multi-echo setting. We consider 2D variable density 

Cartesian sampling patterns in the 𝑘𝑦 −𝑘𝑧 plane with a fixed under-sampling ratio as 

shown in Figure 3.1b, in which learnable weights {𝑤𝑗} are used to generate a multi-

echo probabilistic pattern {𝑃𝑗} through sigmoid transformation and sampling ratio 

renormalization: 

𝑃𝑗 =  Renorm(
1

1 + 𝑒−𝑎 ∙ 𝑤𝑗
),                                                            [3.4] 

where 𝑎 is the slope parameter of the sigmoid function and Renorm(∙) is a linear 

scaling operation to make sure the mean value of probabilistic pattern is equal to the 

desired under-sampling ratio [1]. Assuming an independent Bernoulli distribution 

𝐵𝑒𝑟(𝑃) at each k-space location, a binary under-sampling pattern 𝑈𝑗 is generated via 

stochastic sampling from 𝑃𝑗: 

𝑈𝑗 = 𝟏𝑧<𝑃𝑗 ,                                                                          [3.5] 

where 𝟏𝑥 is the indicator function on the truth value of 𝑥 and 𝑧 is uniformly 

distributed between [0, 1]. Then {𝑈𝑗} are used to retrospectively acquire {𝑏𝑗𝑘} from 

fully sampled multi-echo k-space data. The stochastic sampling layer in Eq. 3.5 has 

zero gradient almost everywhere when backpropagating through this layer, which  
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makes updating {𝑤𝑗} infeasible [54]. To solve this issue, LOUPE-ST implements a 

straight-through estimator [26] for backpropagation through the stochastic sampling 

layer by using the probability distribution P instead: 

𝑑𝟏𝑧<𝑃𝑗
𝑑𝑤𝑗

→ 
𝑑𝑃𝑗
𝑑𝑤𝑗

,                                                                [3.6] 

which solves the zero gradient issue and performs better than other gradient 

approximations, such as the one implemented in LOUPE [7]. 

 

Figure 3.2. Illustration of (a): the proposed segmented k-space ordering strategy of ten 

echoes and (b): pulse sequence design. In (a), segmented centric k-space ordering is 

indexed by greyscale level. In a certain TR, sampled ky-kz locations (yellow dots) in 

current k-space segment (yellow hollow triangles) are exemplified. In (b), additional Gy 

and Gz gradients (blue solid triangles) are added between two unipolar readouts in Gx to 

adjust next sampled location in ky-kz plane. 
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3.3.2 Temporal feature fusion (TFF) for reconstruction 

For image reconstruction Eq. 3.2, we propose an unrolled architecture with a temporal 

feature fusion (TFF) module based on the plug-and-play ADMM [55] strategy. In 

plug-and-play ADMM, auxiliary variables 𝑣𝑗 = 𝑠𝑗 for each echo 𝑗 were introduced 

and an off-the-shelf image denoiser {𝑣𝑗
(𝑡+1)} = 𝒟 ({𝑣̃𝑗

(𝑡)}), where 𝑣̃𝑗
(𝑡) = 𝑠𝑗

(𝑡) +

1

𝜌
𝑢𝑗
(𝑡)

 with 𝑢𝑗
(𝑡)

 the dual variable of the 𝑡-th outer loop and ρ the penalty parameter 

in ADMM, was applied. We propose to unroll the iterative scheme of plug-and-play 

ADMM as a data graph which we call “deep ADMM” network as shown in Figure 

3.1a, where a CNN denoiser 𝒟({𝑣̃𝑗
(𝑡)}; 𝑤𝐷) with weights 𝑤𝐷 is designed to replace 

𝒟 ({𝑣̃𝑗
(𝑡)}) as: 

𝑣𝑗
(𝑡+1) = 𝒟(𝑣̃𝑗

(𝑡) ;𝑤𝐷).                                                         [3.7]  

To incorporate the dynamic nature of multi-echo images into 𝒟({𝑣̃𝑗
(𝑡)}; 𝑤𝐷), we 

propose a temporal feature fusion (TFF) module as shown in Figure 3.1c. In TFF, a 

recurrent module is repeated 𝑁𝑇 times in which at the 𝑗-th repetition (corresponding 

to the 𝑗-th echo), 𝑠𝑗 (real and imaginary parts concatenated along the channel 

dimension) and 𝑠𝑗−1 ’s hidden state feature ℎ𝑗−1  are fed into the module to generate 

𝑠𝑗’s hidden state feature ℎ𝑗: 

ℎ𝑗 = 𝑅𝑒𝐿𝑈 (𝑁𝑠(𝑠𝑗)+ 𝑁ℎ(ℎ𝑗−1)),                                             [3.8] 

where 𝑁𝑠(∙) and 𝑁ℎ(∙) are convolutional layers for 𝑠𝑗 and ℎ𝑗−1, and 𝑅𝑒𝐿𝑈 is the 
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Rectified Linear Unit activation function. The learnable weights in 𝑁𝑠(∙) or 𝑁ℎ(∙) 

are shared across recurrent repetitions. At the 𝑗-th recurrent forward pass shown in 

Eq. 3.8, feature maps ℎ𝑗 are generated by aggregating 𝑠𝑗 and ℎ𝑗−1 through 

convolutions and nonlinear activations, which implicitly capture the echo dynamics 

and fuses features from the preceding echoes. After a full recurrent pass over echoes, 

all feature maps ℎ𝑗 are concatenated along the batch dimension and fed into a 

denoising network to generate {𝑣𝑗
(𝑡+1)}. The dynamic nature of the signal over echo 

times is implicitly captured with the recurrent forward process due to the parameter 

sharing mechanism which attempts to exploit the relationship between a given echo 

and all earlier echoes. 

 

Figure 3.3. SPO=2 sampling pattern of the first echo (Echo1) and difference maps between 

two adjacent echoes (ΔEcho#) in (a): acquired k-space data (acceleration factor 𝑅 = 8) and 
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3.3.3 K-space under-sampling sequence design 

The learned k-space sampling patterns 𝑈𝑗 were implemented in an mGRE pulse 

sequence for prospective data acquisition. Gradient pulses along the phase and slice 

encoding directions were added between consecutive echoes to allow for the 

modification of k-space sampling locations echo-by-echo during one TR. To avoid 

large changes in the phase and slice encoding gradients between two echoes, the 

following k-space ordering strategy was deployed: for each echo 𝑗, the sampled k-

space locations 𝑈𝑗 were first divided into multiple ordered segments of equal size 

based on their angle with respect to the positive 𝑘𝑦 axis. Within each segment, k-

space locations were ordered based on their distance with respect to the k-space 

center. Using such k-space ordering strategy, sampled locations will follow a similar 

trajectory for all echoes, avoiding large changes in the phase and slice encoding 

gradients from echo to echo during one TR. Illustration of the proposed segmented k-

space ordering and pulse sequence design is shown in Figure 3.2. In this example, 

number of echoes 𝑁𝑇 = 10, acceleration factor 𝑅 = 8, 𝑁𝑦 = 206, 𝑁𝑧 = 80, 

𝑁𝑠(number of segments) = 11, 𝑁𝑖𝑛𝑑 (number of k-space location per segment) = 188 

so that 𝑁𝑠 × 𝑁𝑖𝑛𝑑 =
𝑁𝑦 × 𝑁𝑧

𝑅⁄ . Figure 3.2a exemplified the sampled ky-kz locations 

(b): synthetic k-space data (acceleration factor 𝑅 = 4). Different k-space sampling pattern 

was generated from the learned probabilistic pattern per echo, introducing additional 

incoherency along temporal dimension. 
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(yellow dots) in current k-space segment (yellow hollow triangles) during a certain 

TR. Gy and Gz gradients (blue solid triangles) in Figure 3.2b are added between two 

unipolar readouts in Gx to adjust next sampled location in ky-kz plane. 

3.4 Method 

Data were acquired following an IRB approved protocol. All images used in this work 

were de-identified to protect the privacy of human participants. 

3.4.1 Fully sampled acquired k-space data 

Cartesian fully sampled k-space data were acquired in 13 healthy subjects (3 females, 

age: 30.7 ± 7.3) using a 3D mGRE sequence on a 3T GE scanner with a 32-channel 

head coil. Imaging parameters included FA = 15°, FOV = 25.6 cm, TE1 = 1.972 ms, 

TR = 36 ms, #TE = 10, ΔTE = 3.384 ms, acquisition matrix = 256×206×80 (readout × 

phase encoding × phase encoding), voxel size = 1×1×2 mm3, BW = 64 kHz. Total 

scan time was 9:30 mins per subject. 32-coil k-space data of each echo were 

compressed into 8 virtual coils using a geometric singular value decomposition coil 

compression algorithm [56]. After compression, coil sensitivity maps of each echo 

were estimated with a reconstruction null space eigenvector decomposition algorithm 

ESPIRiT [36] using a centric 20×20×20 self-calibration k-space region for each 

compressed coil. From the fully sampled data, coil combined multi-echo images were 

computed using the obtained coil sensitivity maps to provide the ground truth labels 
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for both network training and performance comparison. Training, validation and 

testing has been performed on 2D coronal slices. To this end, the 200 central coronal 

slices per subject were selected along the readout direction, as these contain mostly 

brain anatomy to avoid a bias from slices that do not resemble the brain. 8/1/4 

subjects (1600/200/800 slices) were used as training, validation, and test datasets, 

respectively. 

To demonstrate the generalization ability of LARO, Cartesian fully sampled k-space 

data were also acquired in one of the healthy test subjects with the following sequence 

parameter modifications: another flip angle (25°), number of echoes (7 echoes), voxel 

size (0.75 × 0.75 × 1.5 𝑚𝑚3), a second MRI scanner from the same manufacturer 

(GE, 12-channel head coil) and a third MRI scanner from another manufacturer 

(Siemens, 64-channel head coil). Same k-space processing was applied to these data 

to get compressed 8-coil k-space, coil sensitivity maps and ground truth labels. 

3.4.2 Fully sampled synthetic k-space data 

To demonstrate LARO’s improvement on pathologic reconstruction, supplementary 

synthetic k-space datasets from healthy subjects, multiple sclerosis (MS) and 

intracerebral hemorrhage (ICH) patients were simulated, considering unavailability of 

acquired fully sampled k-space data from patients. Multi-echo complex images of 7 

healthy subjects, 4 MS patients and 1 ICH patient were acquired using a 3D mGRE 
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sequence on a 3T GE scanner. Imaging parameters included FA = 15°, FOV = 25.6 

cm, TE1 = 6.69 ms, TR = 49 ms, #TE = 10, ΔTE = 4.06 ms, acquisition matrix = 

256×206×68 (readout × phase encoding × phase encoding), voxel size = 1×1×2 mm3, 

BW = 64 kHz. Synthetic single-coil k-space data was generated through Fourier 

transform of the complex multi-echo images. Retrospective Cartesian under-sampling 

was applied on the synthetic k-space data along two phase encoding directions. 

Training, validation and testing has been performed on 2D coronal slices. To this end, 

the 200 central coronal slices per subject were selected along the readout direction, as 

these contain mostly brain anatomy to avoid a bias from slices that do not resemble 

the brain. Data from 6/1 healthy subjects (1200/200 slices) was used as 

training/validation. Data from the MS (800 slices) and ICH (200 slices) patients was 

used as two test datasets. 

3.4.3 Under-sampled k-space data in both retrospective and prospective studies 

For a retrospective study, an acceleration factor 𝑅 = 8 (12.5% under-sampling ratio) 

was applied on the fully sampled acquired k-space dataset and acceleration factor 

𝑅 = 4 (25% under-sampling ratio) was applied on the fully sampled synthetic k-

space dataset. For a prospective study, Cartesian under-sampled k-space data was 

prospectively acquired in 10 healthy test subjects (3 females, age: 28.4 ± 4.1) using a 

modified 3D mGRE sequence with the same 3T GE scanner and imaging parameters. 

Different sampling patterns with 𝑅 = 8 were applied during prospective scans and 
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compared. For the optimized k-space sampling pattern, each echo was divided into 11 

segments with 188 locations in each segment, resulting in 188 ×  11 = 2068 k-

space locations to sample in total. Corresponding scan time was 1:20 mins. For 

reference, the default imaging protocol using the same imaging parameters except for 

elliptical R=2 uniform under-sampling reconstruction using the SENSE 

implementation [17] on the scanner was performed on the same subjects. 

3.4.4 Network architecture 

The proposed network architecture is shown in Figure 3.1. Real and imaginary parts 

of multi-echo images were concatenated along the channel dimension, yielding 20 

channels to represent multi-echo complex images in the network. Under-sampled k-

space data was zero-filled and Fourier-transformed to be used as input for deep 

ADMM (Figure 3.1a) with 𝑁𝐼 = 10 unrolled iterations. In deep ADMM, the denoiser 

𝒟(∙; 𝑤𝐷) consisted of five convolutional layers equipped with 320 channels with 

instance normalization [35] + ReLU activation after convolution for each hidden 

layer. The TFF module (Figure 3.1c) used 64 channels in both convolutional layers 

for 𝑠𝑗 and ℎ𝑗. The hidden state feature maps ℎ𝑗 were concatenated along the channel 

dimension and fed into 𝒟(∙; 𝑤𝐷) to generate denoised multi-echo images. The SPO 

module (Figure 3.1b) was used to learn optimal sampling patterns, where weights 

{𝑤𝑗} (with matrix size 206×68×10 for synthetic k-space data and 206×80×10 for the 

acquired k-space data) were initialized as zeros and slope parameter 𝑎 in sigmoid 
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function was 0.25. After generating binary patterns {𝑈𝑗} from probabilistic patterns 

{𝑃𝑗} , values in central 20 × 20 locations of {𝑈𝑗} were set as ones for self-

calibration. 

3.4.5 Training strategy 

The training process consists of two phases. In phase one, weights in the deep ADMM 

network and SPO module were updated simultaneously by maximizing a channel-

wise structural similarity index measure (SSIM) [38]: 
1

𝑁
∑ ∑ 𝑆𝑆𝐼𝑀(𝑠̂𝑗

𝑖 , 𝑠𝑗
𝑖)𝑁𝑇

𝑗=1
𝑁
𝑖  with 

the measure between two windows 𝑥 and 𝑦 of common size (10× 10) and location 

in 𝑠̂𝑗
𝑖 and 𝑠𝑗

𝑖 as:  

𝑆𝑆𝐼𝑀(𝑥,𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 +𝜎𝑦

2 + 𝑐2)
,                                 (9) 

where 𝜇𝑥, 𝜇𝑦 and 𝜎𝑥 , 𝜎𝑦 are the mean and variance of 𝑥 and 𝑦, 𝜎𝑥𝑦  is the 

covariance between 𝑥 and 𝑦, 𝑐1 = 0.01
2  and 𝑐2 = 0.03

2. In phase two, the pre-

trained deep ADMM network from phase one was fine-tuned with fixed binary 

sampling patterns {𝑈𝑗} either manually designed using a multi-level sampling scheme 

[57] or generated from the learned probabilistic patterns {𝑃𝑗} in phase one. We 

implemented in PyTorch using the Adam optimizer [37] (batch size 1, number of 

epochs 100 and initial learning rate 10−3) on a RTX 2080Ti GPU. Our code is 

available at https://github.com/Jinwei1209/LARO.git. 

https://github.com/Jinwei1209/LARO.git
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3.4.6 Ablation study 

An ablation study regarding the effectiveness of TFF and SFO modules were 

investigated by removing one or more of these modules and quantifying the 

corresponding loss in performance. First, a manually designed variable density 

sampling pattern was generated based on a multi-level sampling scheme [57] and used 

to train a baseline deep ADMM network without TFF or SPO (denoted by TFF=0/ 

SPO=0). Then TFF (denoted as TFF=1), single-echo SPO (optimized sampling 

pattern was fixed across echoes, denoted as SPO=1) and multi-echo SPO (denoted as 

SPO=2) were progressively added to the baseline deep ADMM network to check the 

effectiveness of each module, with LARO representing TFF with multi-echo SPO 

(i.e., TFF=1, SPO=2). For baseline deep ADMM without TFF, Eq. 3.8 was replaced 

with ℎ𝑗 = 𝑅𝑒𝐿𝑈(𝑁𝑠(𝑠𝑗)) by removing 𝑁ℎ(ℎ𝑗−1) to show the effectiveness of 

recurrent forward pass of hidden state features {ℎ𝑗} in TFF, where two 64-channel 

convolutional layers in 𝑁𝑠(∙) were used to match the memory usage of TFF during 

ablation study. 

3.4.7 Performance comparison 

Iterative method locally low rank (LLR) [49] and a deep learning method MoDL [50] 

were used as two benchmark reconstruction methods, where MoDL was modified to 

reconstruct multi-echo images simultaneously with concatenated real and imaginary 
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parts of multi-echoes along channel dimension. Manually designed and optimized 

sampling patterns were applied to all reconstruction methods and compared. From the 

resulting gradient echo images, R2* was estimated using ARLO [58] and QSM using 

morphology enabled dipole inversion with CSF-0 reference [59] from relative 

difference local field (RDF), which was estimated using nonlinear field estimation 

[44], phase unwrapping and background field removal [60].  

For all retrospectively under-sampled datasets, quantitative comparisons were 

presented with fully sampled data as reference, where PSNR (Peak Signal-to-Noise 

Ratio) and SSIM (Structural Similarity Index) [38] metrics per reconstructed coronal 

slice were used to measure the reconstruction accuracy of the echo-combined 

magnitude image √∑ |𝑠𝑗|
2𝑁𝑇

𝑗=1
 , R2*  and RDF maps. RMSE (Root-Mean-Square 

Error), HFEN (High-Frequency Error Norm) [61] and SSIM [38] per 3D volume were 

used to measure the reconstruction quality of QSM.  

For the MS patient dataset, lesions were manually segmented by an experienced 

neuroradiologist based on the corresponding T2-weighted FLAIR images which were 

spatially registered to the magnitude of mGRE data. A linear regression was 

performed of the mean susceptibility of all lesions between fully sampled and under-

sampled test data. 

For the prospectively under-sampled dataset, reconstructions were performed by LLR, 
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MoDL and TFF reconstructions with different sampling patterns. The SENSE 

reconstruction from the scanner with acceleration factor 2 was used as a reference for 

comparison. Detailed structures in QSM and R2* such as white matter tracts were 

qualitatively compared. The perivascular spaces were segmented manually into a 

single region of interest ROIp. From this ROIp, a border ROIb was computed by 

dilating ROIp by 1 pixel and removing the original ROIp. The sharpness was defined 

as the difference of average susceptibility of ROIp and ROIb. Mean QSM and R2* 

values and standard deviations in manually drawn ROIs including Globus pallidus 

(GP), Substantia Nigra (SN), Red Nucleus (RN), Caudate Nucleus (CN), Putamen 

(PU), thalamus (TH), optic radiation (OR) and cerebral cortex (CC, starting from the 

top of the brain, drawn on the tenth slice of QSMs covering some part of frontal and 

parietal lobes) were computed and compared. 

3.4.8 Generalization experiments 

When acquiring the fully sampled test data with sequence parameter modifications, 

only one parameter was modified in each scan, except for a different voxel size, 

where increased spatial resolution also increased echo spacing ΔTE to 4.728 ms and 

acquisition matrix to 320×258×112 (readout × phase encoding × phase encoding). 

Sampling patterns of this voxel size were obtained by bicubic interpolation of the pre-

trained probabilistic sampling distribution 𝑃𝑗 with matrix size 206×80 in Eq. 3.4 to 

𝑃𝑗
′ with matrix size 258×112 for the new voxel size. Then the new binary sampling 
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patterns 𝑈𝑗
′ were generated using Eq. 3.5: 𝑈𝑗

′ = 𝟏𝑧<𝑃𝑗
′ , where 𝟏𝑥 is the indicator 

function on the truth value of 𝑥 and 𝑧 is uniformly distributed between [0,1]. For 

the test data with 7 echoes, the first 7 sampling patterns were used when applying 

LARO with SPO=2. Fully sampled data were used as the reference for quantitative  
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comparison in R2*, RDF and QSM, except in magnitude due to signal intensity  

variations of different scans. 

3.5 Results 

For abbreviations, “TFF=0” or “1” denotes “with” or “without” temporal feature 

fusion module; “SPO=0”, “1” or “2” denotes “without”, “with single-echo”, or “with 

multi-echo” sampling pattern optimization. In terms of reconstruction methods, 

“TFF” denotes the proposed reconstruction with “TFF=1” under different sampling 

patterns; “LARO” denotes “TFF” reconstruction specifically under “SPO=2” 

sampling pattern, i.e., the proposed learned acquisition and reconstruction 

optimization framework. 

Figure 3.4. Ablation study on acquired k-space dataset with acceleration factor 𝑅 = 8. 

Reconstruction errors were progressively reduced in magnitude, R2* and QSM as more 

modules were added. White matter tracts (insets) were blurry in all reconstructed R2* and 

QSMs except LARO (TFF=1, SPO=2). Abbreviation: TFF=0 or 1, with or without 

temporal feature fusion module; SPO=0, 1 or 2, “without”, “with single-echo”, or “with 

multi-echo” sampling pattern optimization. 
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3.5.1 Sampling patterns 

Figure 3.3 shows SPO=2 sampling pattern of the first echo (Echo1) and difference 

maps between two adjacent echoes (ΔEcho#) in (a): acquired k-space data (acceleration 

factor 𝑅 = 8) and (b): synthetic k-space data (acceleration factor 𝑅 = 4). Different 

 

Figure 3.5. Performance comparison of acquired k-space test dataset under-sampled by 

the optimized sampling pattern with acceleration factor 𝑅 = 8 (Figure 3a). LLR (2nd 

column) had heavy block-like artifacts in RDFs and QSMs with larger errors compared to 

MoDL (3rd column) and LARO (4th column). Insets in QSMs and R2* showed pronounced 

noise in MoDL, which were not seen in LARO. 
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k-space sampling patterns were generated from the learned probabilistic patterns per 

echo, introducing additional incoherency along the temporal dimension. 

 

3.5.2 Acquired k-space data 

Ablation study 

Reconstructed magnitude, R2*, RDF and QSM in one representative slice are shown 

in Figure 3.4. As TFF and SPO modules were gradually added to the baseline deep 

 

Figure 3.6. Performance comparison of MS lesion dataset under-sampled by the optimized 

sampling pattern with acceleration factor 𝑅 = 4 (Figure 3b). MoDL (3rd column) and 

LARO (4th column) dramatically outperformed LLR (2nd column) in terms of reconstruction 

accuracy, while LARO was slightly better than MoDL.  



47 

 

ADMM architecture, reconstruction errors (2nd, 4th, 6th and 8th rows) were 

progressively reduced in magnitude, R2*, RDF and QSM maps, where LARO 

(TFF=1, SPO=2) performed the best. Depictions of white matter tracts (insets) in R2* 

and QSM maps were improved as more modules were added. Quantitative metrics of 

the ablation study is shown in Table S1. Reconstruction accuracies of magnitude, 

R2*, RDF and QSM maps were progressively improved as more modules were 

introduced, where LARO (TFF=1, SPO=2) performed the best. 
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Performance comparison 

Reconstructed magnitude, R2*, RDF and QSM with SPO=2 sampling pattern (Figure 

3.3a) in one representative slice are shown in Figure 3.5. LLR had larger 

reconstruction errors with heavy block-like artifacts in RDFs and QSMs compared to 

MoDL and  

Figure 3.7. TFF reconstructions on prospectively under-sampled raw k-space data of one 

healthy subject with acceleration factor 𝑅 = 8. Compared to SENSE reconstruction with 

𝑅 = 2 as reference, depictions of white matter tracts in R2* maps (insets in R2* maps) 

were progressively improved from SPO=0, 1 to LARO (SPO=2). Sharpness scores of 

perivascular spaces inside putamen (insets in QSMs) were 0.0270, 0.0111, 0.0247 and 

0.0411 for SENSE, SPO=0, 1 and 2. Abbreviation: TFF= 1, with temporal feature fusion 

module; SPO=0, 1 or 2, without, with single-echo or with multi-echo sampling pattern 

optimization. 
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LARO. Pronounced noise in QSMs and R2* (insets) were showed in MoDL, which 

were not seen in LARO. Reconstructions with SPO=0 and 1 sampling patterns are 

 

Figure 3.8. Performance comparison on the prospectively under-sampled raw k-space data 

of one healthy subject with SPO=2 and acceleration factor 𝑅 = 8 (Figure 3.3a). SENSE 

reconstructions with 𝑅 = 2 were used as references. LLR had heavy block-like artifacts in 

RDFs and QSMs. White matter tracts in R2* maps (insets in R2* maps) and vein structures 

in QSMs (insets in QSMs) were blurrier in MoDL than LARO.  
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shown in Figure S1. Quantitative metrics are shown in Table S2. For each method, 

reconstruction accuracies of magnitude, R2* and QSM maps were progressively 

improved from sampling pattern SPO=0, 1 to 2. For each sampling pattern, TFF 

reconstruction consistently outperformed MoDL and LLR. 
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3.5.3 Synthetic k-space data 

Ablation study 

Reconstructed magnitude, R2*, RDF and QSM at one representative slice of MS test 

dataset are shown in Figure S2 with quantitative metrics of ablation study in Table S3. 

Similar to the acquired k-space data, reconstruction accuracies were progressively 

improved as more modules were added. In Figure S2, putamen in QSMs (insets in 

Figure 3.9. Generalization experiments of LARO with different imaging parameters 

retrospectively under-sampled by SPO=2 sampling pattern. Fully sampled reference of 

each test dataset was used to compute error maps and quantitative metrics. Magnitude 

images were not considered for quantitative comparison due to signal intensity variations 

among scans. LARO performed well without visible artifacts on test datasets with another 

flip angle (25°, 2nd column), number of echoes (7 echoes, 1 st column) and a second MRI 

scanner from the same manufacturer (GE, 3 rd column), but had moderate noise (red arrows 

in the last column) on another voxel size (0.75 × 0.75× 1.5 𝑚𝑚3, last column) and 

moderate residual aliasing artifacts on a third MRI scanner from another manufacturer 

(Siemens, 4th column). Reconstructions on these datasets retrospectively under-sampled by 

SPO=1 and 0 were shown in Figures S6 and S7. For each test dataset, reconstruction 

performance was consistently improved from sampling pattern SPO=0, 1 to 2. 
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QSMs) were better depicted as more modules were added. 

Performance comparison on MS dataset 

Reconstructed magnitude, R2*, RDF and QSM with SPO=2 sampling pattern (Figure 

3.3b) in one representative slice are shown in Figure 3.6. LLR had much larger errors 

compared to MoDL and TFF. TFF slightly outperformed MoDL. Reconstructions 

with SPO=0 and 1 sampling patterns are shown in Figure S3. Quantitative metrics are 

shown in Table S4. Both TFF and SPO=2 outperformed other baseline reconstruction 

methods and sampling patterns. 

Linear regressions of lesion-wise mean susceptibility values between fully sampled 

and reconstructed QSMs are shown in Figure S4. For SPO=0, 1 and 2, linear 

coefficients for TFF were 1.08, 0.96, and 0.97 with the highest 𝑅2: 0.95, 0.98 and 

0.99 compared to LLR and MoDL under each sampling pattern. LLR had linear 

coefficients 1.13, 0.98, 0.95 with the lowest 𝑅2: 0.84, 0.81 and 0.92. MoDL had 

linear coefficients 1.20, 1.07 and 1.10 with 𝑅2 in between: 0.89, 0.94 and 0.95. Both 

TFF and SPO=2 outperformed other baselines. 

Performance comparison on ICH dataset 

The pre-trained models were tested on the ICH patient data with acceleration factor 

𝑅 = 4 and compared. Reconstructed magnitude, R2*, RDF and QSM in one 

representative slice containing hemorrhage are shown in Figure S5. LLR had the 

highest errors among the three methods. MoDL showed some errors (red solid 
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arrows) in QSMs which were not seen in TFF. Quantitative metrics show that both 

TFF and SPO=2 outperformed their baselines. 

3.5.4 Prospective study 

Prospectively under-sampled scans with acceleration factor 𝑅 = 8 were acquired 

using the modified sequence (Figure 3.2) with sampling patterns SPO=0, 1 and 2. 

TFF reconstructions with different sampling patterns are shown in Figure 3.7, where 

SENSE reconstructions with 𝑅 = 2 were used as reference. Depictions of white 

matter tracts in R2* maps (insets in R2* maps) were progressively improved from 

SPO=0, 1 to 2. Sharpness scores of perivascular spaces inside putamen (insets in 

QSMs) were 0.0270, 0.0111, 0.0247 and 0.0411 for SENSE, SPO=0, 1 and 2. LARO 

achieved comparable image quality with R=2 SENSE reference. LLR, MoDL and 

LARO reconstructions with SPO=2 sampling pattern (Figure 3.3a) are shown in 

Figure 3.8. LLR had the largest errors with heavy block-like artifacts. LARO 

outperformed MoDL in the depiction of white matter tracts in R2* maps (insets) and  

vein structures in QSMs (insets). ROI analyses are shown in Tables S5 and S6. In 

Table S5, with R=2 SENSE as reference, QSM under-estimations in SN, RN, CN and 

CC reconstructed by MoDL and TFF were observed when SPO=0 and 1 but were 

reduced or recovered when SPO=2. LLR had more deviations than MoDL and TFF. 

In Table S6, R2* over-estimations in GP, PU and CC were seen when SPO=0 and 1 

but were recovered when SPO=2 for LLR, MoDL and TFF. 
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3.5.5 Generalization study 

Reconstructions of different test datasets retrospectively under-sampled by SPO=2 

were shown in Figure 3.9. Error maps and quantitative metrics were computed in R2*, 

RDF and QSM according to their fully sampled references except in magnitude due to 

signal intensity variations of different datasets. No visible artifacts were seen when 

applying the pre-trained reconstruction network to the datasets with another flip angle 

(25°, 2nd column), number of echoes (7 echoes, 1st column) and a second MRI scanner 

from the same manufacturer (GE, 3rd column). Moderate noise appeared (red arrows 

in the last column) when tested with another voxel size (0.75 × 0.75 × 1.5 𝑚𝑚3 , last 

column), while moderate residual aliasing artifacts existed when tested with a third 

MRI scanner from another manufacturer (Siemens, 4th column). Reconstructions 

retrospectively under-sampled by SPO=0 and 1 were shown in Figures S6 and S7. For 

each test dataset, reconstruction performance was consistently improved from 

sampling pattern SPO=0, 1 to 2. 

3.6 Discussion and Conclusion 

In this work, we demonstrated the feasibility of learning a sampling pattern and 

reconstruction process specifically designed to accelerate the acquisition of multi-

echo gradient echo data for the purpose of computing a susceptibility map (QSM). 

R=8 acceleration was achieved while maintaining QSM quality in both healthy 
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subjects as well as in an MS patient. Both retrospective and prospective acceleration 

was demonstrated. Finally, reconstruction performance was observed to be superior 

when compared to previously proposed acceleration techniques.  

The original LOUPE [1]/LOUPE-ST [7] learned an optimized variable density 

sampling pattern from fully sampled single-echo k-space data. In the SPO=1 method 

in this work, LOUPE-ST was performed to learn a single optimized sampling pattern 

from fully sampled multi-echo k-space data and the obtained sampling pattern and 

reconstruction was applied to all echoes. The SPO = 2 method differs from SPO = 1 

by learning a sampling pattern for each echo, allowing the introduction of additional 

sampling incoherency along echoes. LOUPE/LOUPE-ST (SPO = 1) outperformed 

manually designed variable density patterns (SPO = 0) in that LOUPE/LOUPE-ST 

optimized the sampling pattern variable density by learning a probabilistic density 

distribution in Eq. 3.4 that was updated during training to improve the reconstruction 

performance. 

In this work, multi-echo sampling pattern optimization SPO = 2 (Eq. 3.3) was learned, 

achieving both optimized k-space variable density as in SPO = 1 and additional 

incoherency along echoes, which may result in better aliasing patterns for gradient 

echo images of different echoes that can be combined and compensated during 

reconstruction. SPO=2 sampling pattern distinguishes the proposed framework from 

another deep learning based mGRE acceleration method [53], where manually 
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designed 2D variable density sampling pattern (SPO=0) was applied, which may not 

be optimal for mGRE acquisition. We extend our conference paper [8] by 

implementing SPO = 2 sampling pattern into the existing mGRE sequence. The 

proposed multi-echo adaptive fan-beam ordered strategy (Figure 3.2a) prevented large 

changes in the phase and slice encodings between echoes within one TR, improving 

image quality [62, 63]. The prospective results in Figures 3.6 and 3.7 show the 

feasibility of achieving R = 8 factor acceleration using the modified mGRE sequence 

with QSM image quality comparable to R=2 SENSE. 

Our reconstruction architecture (Figure 3.1) was based on unrolling a plug-and-play 

ADMM iterative scheme [55] and replacing the regularization step with a deep neural 

network denoiser. This idea is inspired by MoDL [50] where quasi-Newton iterative 

scheme was unrolled as a network architecture and a five-convolution-layer neural 

network denoiser was applied. In [53], a MoDL-like architecture (Figure 3.1 in [53]) 

was proposed but only one repetition of unrolling was applied. As reported in MoDL 

[50], more iterations/repetitions of the unrolled architecture helped improve 

reconstruction performance. We used 𝑁𝐼 = 10 unrolled iterations same as MoDL to 

ensure good performance. 

Recently, using convolutional neural networks to solve inverse problems related to 

multi-echo MRI signals has been explored in [11, 12, 14, 15, 64-67], where the 

established U-Net architecture [68] was always applied. LARO is novel here because 
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it introduces a TFF module (Figure 3.1c) to implicitly capture the multi-echo 

correlation and effectively compensate temporally incoherent aliasing patterns of the 

GRE echo signals when SPO = 2. The benefit of the TFF module was apparent in our 

ablation study (Figures 3.4 and S2, Tables S1 and S3) and comparison to MoDL 

(Figures 3.7, S1, S3 and S5). This distinguishes the proposed framework from [53] as 

well, since in [53] multi-echo images were only concatenated into channel dimension 

for convolution. 

Pathologies such as hemorrhagic lesions which were not seen in the healthy training 

data were still effectively reconstructed by LARO and MoDL with low reconstruction 

error (2nd row in Figure S5). We speculate that the use of the data consistency 

module in the proposed method allows for accurate image reconstruction of 

pathologies not seen during training. Generalization experiments of LARO (Figures 

3.9, S6 and S7) demonstrate that changing the flip angle, number of echoes or using a 

different scanner from the same manufacturer led to small image reconstruction 

errors. At the same time, using a smaller voxel size or a scanner from a different 

manufacturer led to a moderate increase in image noise (red arrows in the last column 

of Figure 3.9) or residual aliasing (4th column in Figure 3.9). One potential cause for 

the decreased performance when changing the voxel size is that it currently requires 

interpolating the optimal sampling pattern. For optimal performance, LARO may 

need to be retrained. It is however possible that fine-tuning the existing weights using 
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a small set of fully sampled data acquired with the new resolution may be sufficient, 

the details of which should be the subject of future research. 

Despite the limitations, pre-trained sampling patterns from SPO=0, 1 to 2 consistently 

improved the reconstruction performance on all test datasets, which implies that for 

brain mGRE acquisition, the optimized k-space variable density distribution (Eq. 3.4) 

may be independent of the scanning parameters/manufacturers and can be generalized 

effectively. LARO is also independent of the number of receiver coil channels used 

for scan, as both TFF and denoiser networks are applied to the coil-combined image, 

which also improves the generalization ability of LARO. 

For raw k-space data, fully sampled training dataset was only available on healthy 

volunteers because of long scan time (9:30 mins), which was not feasible on patients. 

To incorporate patients’ dataset for training, an unrolled reconstruction network may 

be trained without fully sampled k-space data using self-supervised learning [69], 

where during training, one portion of the under-sampled k-space data is included in 

the data consistency module and the remaining k-space data is used in a forward 

model loss, which promises to achieve test results comparable to supervised training 

on fully sampled data. The reconstruction network of LARO may be enhanced by 

incorporating under-sampled patient data with such self-supervised learning strategy. 

LARO is applied here to mGRE for accelerating QSM that is useful for studying 
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tissue magnetism [70], particularly paramagnetic iron [71], and is promising for 

assessing various diseases [72], such as multiple sclerosis [73]. The proposed 

combination of sampling and reconstruction optimization can be extended to other 

mGRE tasks with different organs, such as liver and cardiac QSM [74-76], or other 

quantitative imaging tasks, such as T1 [40] and T2 [41] mapping, where signal 

models based on Bloch equations are used to describe signal intensity changes over 

time. The proposed sampling strategy and temporal feature fusion may be useful to 

obtain better multi-contrast images. Furthermore, with the emergence of quantitative 

multi-parametric MRI [77], sampling and reconstructing multi-contrast images 

together in one sequence can be an effective strategy, since multi-contrast images that 

are intrinsically registered in one scan have redundancy in both spatial and temporal 

dimensions, which can be utilized to regularize the image series during 

reconstruction. Our future work will extend LARO to other mGRE and multi-contrast 

MRI tasks. 
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CHAPTER 4. mcLARO: MULTI-CONTRAST LEARNED ACQUISITION 

AND RECONSTRUCTION OPTIMIZATION FOR SIMULTANEOUS 

QUANTITATIVE MULTI-PARAMETRIC MAPPING 

4.1 Abstract 

A pulse sequence was developed by interleaving inversion recovery and T2 

magnetization preparations and single-echo and multi-echo gradient echo 

acquisitions, which sensitized k-space data to T1, T2, T2* and magnetic 

susceptibility. The proposed mcLARO used a deep learning framework to optimize 

both the multi-contrast k-space under-sampling pattern and the image reconstruction 

based on image feature fusion. The proposed mcLARO method with 𝑅 = 8 under-

sampling was validated in a retrospective ablation study using fully sampled data as 

reference and evaluated in a prospective study using separately acquired 

conventionally sampled quantitative maps as reference standard . The retrospective 

ablation study showed improved image sharpness of mcLARO on the reconstructed 

images compared to the baseline network without multi-contrast sampling pattern 

optimization or image feature fusion, and negligible bias and narrow 95% limits of 

agreement on regional T1, T2, T2* and QSM values were obtained by the under-

sampled reconstructions compared to the fully sampled reconstruction. The 

prospective study showed small or negligible bias and narrow 95% limits of 
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agreement on regional T1, T2, T2* and QSM values by mcLARO (5:39 mins) 

compared to reference scans (40:03 mins in total). 

4.2 Introduction 

For developing MRI pulse sequences and image reconstructions in fast quantitative 

multi-parametric mapping, in addition to T1 and T2 relaxation time, there has been an 

increasing interest in incorporating multi-echo gradient echo (mGRE) acquisition into 

multi-contrast sequences to allow T2* and quantitative susceptibility mapping (QSM) 

[78-80]. QSM [6] is a post-processing technique which estimates the tissue local field 

from the total field derived from the GRE phase data [43, 44] by applying background 

field removal [60] and performs the dipole field inversion to calculate the tissue 

susceptibility map [45]. In the brain, QSM can provide a quantitative measure of local 

susceptibility sources in both healthy and pathological tissues including endogenous 

deoxyheme and ferritin iron, myelin, and calcium, as well as exogenous gadolinium- 

or iron-based contrast agents [71, 81, 82]. QSM has been applied in multiple sclerosis 

[81], stroke and small vessel disease [83], and neurodegenerative disorders including 

amyotrophic lateral sclerosis[84], Parkinson’s disease [85, 86] and Alzheimer’s 

disease [87]. 

Recent works incorporating T2* and QSM into multi-parametric mapping include 

MP2RAGEME [78], Multitasking [79] EPTI  [80] and BUDA-SAGE [88]. A 

common acquisition strategy of these methods is to combine magnetization 
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preparations (e.g., inversion recovery (IR) for T1 weighting and T2prep for T2 

weighting) with an mGRE readout using k-space under-sampling. Images are 

reconstructed using parallel imaging methods such as  SENSE [17] or GRAPPA [16], 

or low-rank denoising [89] and multitasking [77]. While promising, these methods 

suffer from relatively long scan time [78, 79], low SNR on QSM due to the short last 

echo time [79], and thick slices with limited coverage [80], which limits their clinical 

utility. 

Recently, deep learning approaches have been applied to k-space under-sampling 

pattern optimization [1, 7], image reconstruction [2, 8, 9, 11, 50, 90, 91], biophysical 

inverse problems [12, 15, 65, 67, 92-94] and image post-processing [95-98] in MRI. 

For the under-sampling pattern optimization, LOUPE [1] and its extension LOUPE-

ST [7] learned an optimal variable density k-space under-sampling pattern through 

back propagation, where a probabilistic density function of k-space data was updated 

to improve reconstructed image quality. For image reconstruction, MoDL [50] and 

VarNet [2] incorporated the parallel imaging forward model into the unrolled 

reconstruction networks, where convolutional denoisers were learned from fully 

sampled images to help reduce noise and aliasing artifacts from under-sampled 

reconstruction. In addition to the single-echo k-space imaging involved in the above 

methods, k-t imaging with multiple echoes, contrasts or frames has been accelerated 

using deep learning as well [8, 9, 52, 91]. 
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In this work, we extend our prior work, learned acquisition and reconstruction 

optimization (LARO) [8, 9] for QSM acceleration, to the multi-parametric mapping 

acceleration by 1) developing an IR and T2-prepared single and multi-echo GRE 

sequence for simultaneous T1w, T2w and T2*w signal acquisition, 2) building a 

multi-contrast under-sampling pattern and unrolled image reconstruction network 

optimization for accelerated imaging, and 3) deriving T1 and T2 maps using 

dictionary matching and T2* and QSM maps using multi-echo GRE signal fitting. 

The resulting method is named mcLARO: Multi-Contrast Learned Acquisition and 

Reconstruction Optimization. 

4.3 Method 

4.3.1 Pulse sequence design 

Figure 1a shows the proposed multi-contrast pulse sequence inspired by the 

MP2RAGEME [78] and 3D-QALAS [99, 100] designs. A module consisting of a 

non-selective inversion pulse followed by single-echo (𝑁𝐺𝑅𝐸  TRs) and multi-echo 

(𝑁𝑚𝐺𝑅𝐸  TRs, each 𝑁𝐸 echoes) GRE readouts was used to sensitize T1, T2* and 

magnetic susceptibility. A second module consisting of a T2prep pulse [101, 102] 

followed by a single-echo GRE readout was used for T2 relaxation measurement. 

Acquisition parameters for the proposed sequence are listed in Table S1. 
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4.3.2 K-space sampling  

Similar to the prospective under-sampling strategy in LARO [9], a radial fan-beam 

sampling scheme [62] is used for both fully sampled and variable density under-

sampled scans in the proposed sequence. During the fully sampled scan with 

258 × 160 𝑘𝑦 − 𝑘𝑧 acquisition matrix, k-space locations are divided into 244 fan-

beam segments with 128 TRs in each segment for one repetition of the sequence, 

yielding (244 ∗ 128)/(258∗ 160)  = 75.7% elliptical k-space coverage to acquire 

fully sampled data. At each repetition, in-and-out (k-space center in the middle of the 

segment), reverse-centric (k-space center at the end of the segment), and centric (k-

space center at the beginning of the segment) ordering strategies are applied to the 

inversion recovery (IR) prepped single-echo, multi-echo, and T2 prepped single-echo 

acquisitions, respectively. The total scan time of the fully sampled data is 34:30 mins. 

The under-sampling pattern follows the same fan-beam strategy with sparsely 

sampled k-space locations. An 𝑅 = 8 under-sampling pattern was implemented into 

the proposed sequence with 40 repetitions, resulting in (40 ∗ 128)/(258∗ 160) =

12.40% sampling ratio with a total scan time of 5:39 mins. More details regarding  

the fan-beam sampling strategy can be found in Figure 2 in [9]. 

4.3.3 Optimized multi-contrast reconstruction 

A deep ADMM network (Figure 2a) proposed in [9] is used for image reconstruction 

by unrolling an ADMM iterative scheme of multi-contrast images, where single and 



66 

 

multi-echo images are reconstructed together. A multi-contrast feature fusion module 

(Figure 2c) is proposed by extending the temporal feature fusion module in [9] to 

aggregate features across single-echo and multi-echo contrasts during reconstruction. 

First, the temporal feature fusion module proposed in [9] is used to extract the 

features of the multi-echo images 𝑠𝑗 (𝑗 = 1, 2, … , 𝑁𝐸) for T2* and QSM, where a 

recurrent convolutional network including convolutional layers 𝑁𝑚(∙) and 𝑁ℎ(∙) for 

𝑠𝑗 and ℎ𝑗 is used to generate the 𝑗-th echo 𝑠𝑗’s hidden state feature ℎ𝑗 recurrently 

after Rectified Linear Unit (ReLU) activation: 

ℎ𝑗 = 𝑅𝑒𝐿𝑈 (𝑁𝑚(𝑠𝑗)+ 𝑁ℎ(ℎ𝑗−1)).                                                   [4.1] 

This recurrent network attempts to implicitly capture the echo dynamics and fuse 

features from the preceding echoes. Second, another convolutional layer 𝑁𝑠(∙) is 

used to extract features of the single-echo images 𝑠𝑁𝐸+1, 𝑠𝑁𝐸+2  and 𝑠𝑁𝐸+3, 

corresponding to the two inversion recovery and the single T2 prepared images, 

respectively: 

ℎ𝑁𝐸+1:3 = 𝑁𝑠(𝑠𝑁𝐸+1:3).                                                                [4.2]   

Finally, the feature maps of all echoes are updated by fusing ℎ𝑗 and ℎ𝑁𝐸+1:3 : 

ℎ𝑗 = ℎ𝑗 + ℎ𝑁𝐸+1 + ℎ𝑁𝐸+2 + ℎ𝑁𝐸+3 (𝑗 = 1, 2, … ,𝑁𝐸), 

ℎ𝑁𝐸+1:3 = ℎ1 +ℎ𝑁𝐸+1:3.                                                              [4.3] 

After the multi-contrast feature fusion, all feature maps are concatenated along the 

channel dimension and fed into a denoising network based on U-Net [68] to generate 
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denoised multi-contrast images. 

4.3.4 Optimized multi-contrast sampling pattern 

A sampling pattern optimization module (Figure 2b) proposed in [9] is used to 

optimize an 𝑅 = 8 under-sampling pattern for each echo from the fully sampled k-

space data. This module updates the variable density of the under-sampling pattern by 

learning a probabilistic density distribution that the under-sampling pattern is 

generated from. Specifically, 2D variable density Cartesian sampling patterns in the 

𝑘𝑦 −𝑘𝑧 plane as shown in Figure 2b are used to retrospectively under-sample the 

fully sampled k-space data during the sampling pattern optimization process, where 

for the 𝑗-th contrast (𝑗 = 1, 2, … , 𝑁𝐸 +3), learnable weights 𝑤𝑗 generate a 

probabilistic density pattern 𝑃𝑗 through sigmoid transformation with a slope 

parameter 𝑎 = 0.25: 

𝑃𝑗(𝑤𝑗) =  
1

1 + 𝑒−𝑎 ∙ 𝑤𝑗
.                                                                 [4.4] 

Then a binary under-sampling pattern 𝑈𝑗 is generated via stochastic sampling from 

𝑃𝑗 with indicator function 𝟏𝑥 and sample 𝑧 from uniform distribution on [0,1]: 

𝑈𝑗(𝑤𝑗) = 𝟏𝑧<𝑃𝑗 (𝑤𝑗) .                                                                    [4.5] 

A straight-through estimator [26] is used to overcome the zero gradient problem when 

backpropagating through Eq. 2: 

𝑑𝟏𝑧<𝑃𝑗 (𝑤𝑗)

𝑑𝑤𝑗
→  
𝑑𝑃𝑗(𝑤𝑗)

𝑑𝑤𝑗
.                                                                  [4.6] 
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4.3.5 Data acquisition and processing 

All sequences were run on a 3T GE scanner with a 32-channel head coil. Fully 

sampled k-space data were acquired in 13 healthy subjects following an IRB approved 

protocol. Voxel size was 0.75 × 0.75 × 1 𝑚𝑚3  with imaging parameters listed in 

Table S1. Coil compression [56] was applied to the original 32-coil k-space data, 

generating 8 virtual coils to save GPU memory. A coil sensitivity map was then 

estimated with ESPIRiT [36] using a centric 20×20×20 self-calibration k-space 

region. Fully sampled multi-contrast images were computed by taking inverse Fourier 

transform of multi-coil k-space data and combining them using the obtained coil 

sensitivity maps to provide labels for network training and result validation. 8/1/4 

subjects (2560/320/1280 2D coronal slices) were used as training, validation, and test 

datasets, respectively. K-space data were also retrospectively sampled on the same 

test subjects using the learned 𝑅 = 8 under-sampling pattern.  

Under-sampled k-space data were acquired in the same 4 test healthy subjects 

following an IRB approved protocol, using the same imaging parameters as above 

while using the under-sampling pattern obtained during training on the previous 

healthy subjects. The same data processing was applied to the prospectively under-

sampled k-space data and used as additional test data. 

T1 and T2 maps were calculated by dictionary matching. The dictionary containing a 

4-time-point transverse magnetization for the mcLARO sequence was generated using 
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a numerical Bloch simulation with sequence parameters in Table S1 (assuming on-

resonance condition) and T1 values (ms) in [100:10:2000] and T2 values (ms) in 

[10:1:200]. QSM was calculated from the mGRE images through fitting the total field 

map [43, 44], removing background field [60], and solving dipole inversion [45]. T2* 

was calculated using the ARLO algorithm [58]. 

The training process consisted of two phases. In phase one, weights in the deep 

ADMM network and sampling pattern optimization module were updated 

simultaneously by maximizing a channel-wise structural similarity index measure 

(SSIM) [38]. In phase two, the pre-trained deep ADMM network from phase one was 

fine-tuned with fixed binary sampling patterns. We implemented the training in 

PyTorch using the Adam optimizer [37] (batch size 1, number of epochs 100 and 

initial learning rate 10−3) on a RTX 2080Ti GPU. 

4.3.6 Comparison and statistical analysis 

An ablation study was conducted on the retrospectively under-sampled data to 

validate the efficacy of the multi-contrast feature fusion (Eq. 3) and the sampling 

pattern optimization of the three single-echo GRE acqusitions (Eq. 4) in mcLARO. 

We compared the ADMM reconstruction obtained without either of them (denoted as  
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 “mcLARO=00”) with that obtained using only sampling pattern optimization 

(denoted as “mcLARO=01”) and that obtained using both (denoted as 

“mcLARO=11”). Multi-echo sampling pattern optimization and temporal feature 

fusion of mGRE images for T2* and QSM mapping, which had already been validated 

in LARO [9], were used in the ablation study. When the single-echo sampling pattern 

optimization was not applied, variable density sampling patterns were designed using 

a multi-level sampling scheme [57], where sampling pattern of each single-echo was 

generated independently from a manually designed probabilistic density function. A 

reference-free image blurriness metric [103] was used to measure reconstruction 

  

Figure 4.1. a) Schematics of the proposed mcLARO pulse sequence for multi-parametric 

mapping, which consists of inversion recovery (IR) and T2prep magnetization preparations 

and single and multi-echo GRE readouts; b) Bloch simulation of the steady state signal of 

the white matter (T1/T2 = 855/67 ms, blue), gray matter (1264/89 ms, orange), and CSF 

(T1/T2 = 4000/2000 ms, yellow). 
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quality (a score between 0 and 1, with lower indicating less blurring). For each test 

subject, the first single-echo image from the fully sampled scan was used to segment 

114 regions of interest (ROIs) using FreeSurfer [104, 105]. Bland-Altman analyses 

[106] were performed to measure the agreement between the regional T1, T2, T2* and  

QSM values obtained from the fully sampled and under-sampled reconstructions. 

Reference scans for T1, T2, T2* and QSM mapping were acquired separately using 

conventional sampling and compared to the mcLARO prospective experiment on the 

same four test subjects. The sequence parameters of the reference scans are 

summarized in Table S2. In each subject, 12 ROIs were manually drawn that were 

  

Figure 4.2. a) Deep unrolled ADMM network of mcLARO multi-contrast reconstruction; b) 

multi-contrast sampling pattern optimization module to learn an optimized pattern from 

fully sampled data; c) multi-contrast feature fusion module to aggregate information 

across contrasts during reconstruction. 
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contained in the slice coverage of the 2D reference scans, including anterior white 

matter, caudate nucleus, putamen, globus pallidus, substantia nigra, and red nucleus 

(one ROI in each hemisphere for each region). Bland-Altman analyses [106] were 

used to assess the agreement between the regional T1, T2, T2* and QSM values 

obtained with the reference scans and the prospectively under-sampled mcLARO 

scans. 
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4.4 Results 

4.4.1 Retrospectively under-sampled ablation study 

 

Figure 4.3. Ablation study of the multi-contrast sampling pattern optimization and multi-

contrast feature fusion modules in mcLARO with 𝑅 = 8 retrospective under-sampling 
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Figure 4.3 shows an example of the quantitative maps obtained from the fully 

sampled and 𝑅 = 8 retrospectively under-sampled reconstructions in one 

representative test subject. In the T1 map comparison (1st row), the moderate noise in 

the fully sampled T1 map (1st column) was reduced in the under-sampled T1 maps 

from the mcLARO ablation study (2nd to 4th columns). In the zoomed in T1 maps, 

the “mcLARO=00” reconstruction (2nd column, without the multi-contrast feature 

fusion or the sampling pattern optimization modules) showed blurry depictions of the 

putamen and thalamus. These depictions progressively improved as more modules 

were added in the “mcLARO=01” (3rd column, with the sampling pattern 

optimization module), “mcLARO=10” (4th column, with the multi-contrast feature 

fusion module) and “mcLARO=11” (5th column, with both modules) reconstructions. 

from the fully sampled data of one representative test subject. For T1 maps (1st row), the 

noise visible in the fully sampled reconstruction (1st column) was reduced in all under-

sampled reconstructions (2nd to 5th columns). Deep grey matter regions in the zoomed in 

images were blurry without the two modules (mcLARO=00), but were progressively 

improved when the sampling pattern optimization (mcLARO=01), feature fusion 

(mcLARO=10) and combined (mcLARO=11) modules were applied. For T2 and T2* maps, 

noise in the fully sampled reconstruction was reduced in all under-sampled 

reconstructions. No visual differences were observed among under-sampled 

reconstructions of T2, T2* and QSM. 
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The blurriness score of the fully sampled, mcLARO=00, mcLARO=01, mcLARO=10 

and mcLARO=11 T1 maps were 0.24, 0.32, 0.31, 0.30  and 0.29, respectively, 

demonstrating improved image sharpness in the ablation study. For T2 and T2* maps 

(2nd and 3rd rows), the slight noise observed in the fully sampled maps was reduced 

in the under-sampled reconstructions. No visual differences were observed among 

under-sampled reconstructions of T2, T2* and QSM in the ablation study. 

Figure 4.4 shows Bland–Altman plots of regional T1, T2, T2* and QSM values 

obtained with the fully sampled and under-sampled reconstructions from the four test  

 

Figure 4.4. Bland–Altman plots of regional T1, T2, T2* and QSM ROI values between fully 

sampled and retrospectively under-sampled reconstructions on the four test subjects. For 
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subjects. For all under-sampled reconstructions, negligible bias and narrow 95% 

limits of agreement were obtained. 

4.4.2 Prospectively under-sampled reconstruction 

Figure 4.5a shows 𝑅 = 8 prospectively under-sampled mcLARO quantitative maps 

of one test subject (1st row) and reference scans (2nd row), demonstrating good visual 

agreement of all the quantitative maps obtained with mcLARO and reference scans. 

Please note that the visualized anatomy is only approximately similar as head motion 

may have occurred between acquisitions. Figure 4.5b shows Bland–Altman plots of 

regional T1, T2, T2* and QSM values obtained from the four test subjects,  

all the under-sampled reconstructions, negligible bias and narrow 95% limits of agreement 

were obtained (FS = Fully Sampled, M = mcLARO).  
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Figure 4.5. a) mcLARO and reference multi-parametric maps. Similar multi-parametric 

maps were derived from mcLARO compared to the reference. b) Bland–Altman plots of 
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demonstrating small or negligible bias and narrow 95% limits of agreement. 

4.5 Discussion and Conclusion 

We developed mcLARO as a new learning-based framework for fast whole brain sub-

millimeter T1, T2, T2* and QSM mapping in a single scan. Our ablation study showed 

the efficacy of the multi-contrast sampling pattern optimization and temporal feature 

fusion in mcLARO. Our prospective experiment showed comparable quantitative 

values of mcLARO in the selected ROIs with respect to the reference quantitative 

scans. 

Based the LARO [9] method for mGRE sampling pattern optimization, the k-space 

sampling pattern in mcLARO, which included both single and multi-echo GRE 

acquisitions, was optimized independently for each echo and contrast. An optimized 

spatial incoherency of the learned sampling pattern in each echo was achieved by 

updating the probabilistic sampling density in Eq. 4 during back-propagation to 

minimize reconstruction error with respect to the fully sampled images. This was 

verified by our ablation study in Figure 4.3, where incorporating the sampling pattern 

optimization module improved the sharpness of the putamen and thalamus (4th and 

5th columns of T1 maps in Figure 4.3). 

regional T1, T2, T2* and QSM values obtained with the proposed mcLARO and reference 

methods from four test subjects. Small or negligible bias and narrow 95% limits of 

agreement were achieved by mcLARO. 
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Multi-contrast images acquired by the proposed sequence were naturally co-registered 

and shared similar structural information, which was utilized by the proposed multi-

contrast feature fusion module in Figure 4.2c. Multi-echo feature fusion has been 

proposed in LARO [9] using a recurrent convolutional module. Based on LARO, 

multi-contrast image features from all the contrasts were similarly aggregated in 

mcLARO. Improved putamen and thalamus depiction (3rd and 5th columns of T1 

maps in Figure 4.3) shows the effectiveness of the multi-contrast feature fusion. In 

addition, noise in the fully sampled images was suppressed in the reconstructed 

images (zoomed in images in Figure 4.3). This phenomenon may be explained by the 

noise2noise [107] experience in deep learning image restoration, where convolutional 

network is demonstrated to predict an averaged output from a training dataset with 

unbiased noise. 

Prospective results in Figure 4.5 demonstrate that mcLARO in less than 6 minutes 

yielded comparable quantitative values to the reference quantitative scans. Compared 

to other quantitative multi-parametric mapping methods such as MP2RAGEME [78], 

MR Multitasking [79] and 3D QALAS  [100], mcLARO uses a similar GRE-based 

IR and T2 prepped pulse sequence for contrast variations. The difference is that 

mcLARO is based on a learning-based framework for both sampling pattern and 

image reconstruction optimization. Learnable weights in mcLARO are updated to 

produce better spatial-temporal sampling incoherency, multi-contrast feature 
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aggregation and regularization to improve reconstruction quality under a high under-

sampling ratio (𝑅 = 8). As a result, mcLARO achieves a whole brain sub-millimeter 

multi-parametric mapping in a shorter scan time compared to other methods, such as 

MP2RAGEME (𝑅 = 2.89) [78] and 3D-QALAS (𝑅 = 1.7) [100]. Recently, multi-

contrast images in 3D-QALAS were reconstructed using model-based deep learning 

[91] where acceleration was pushed to 𝑅 = 12. Our method differs in that additional 

multi-echo GRE is available and a sampling pattern is learned for each contrast. 

Future work includes pushing mcLARO acceleration to higher under-sampling ratio, 

such as 𝑅 = 12. 

There are some limitations of mcLARO. First, only a limited number of echoes are 

acquired to capture contrast variation due to magnetization relaxation (Figure 4.1a). A 

more suitable way may be time-resolved sampling, such as in MR Multitasking [79] 

and 3D-EPTI [108], where k-space centers are acquired more frequently to capture 

the variation. Deep learning has been used for time-resolved imaging with subspace 

learning [109]. Future work may include applying time-resolved acquisition and deep 

subspace reconstruction to mcLARO. Second, the long scan time of the fully sampled 

data in mcLARO may introduce motion artifacts, including motion blurring[110]. 

Self-supervised learning via training directly on under-sampled data may replace the 

possibly motion-corrupted fully sampled labels [69], but direct motion estimation may 

be needed to reducing blurring[111]. Future work includes exploring self-supervised 
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learning strategies in mcLARO. Third, the study subject sample size is very limited. 

mcLARO prospective study was not applied to patients with pathology not seen in 

training. The study organ was limited to the brain, and body QSM would require 

chemical shift correction[112], in addition to motion compensation. Future work also 

includes testing the generalization ability of mcLARO in organs outside the brain and 

on patients with new pathology. 
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CHAPTER 5. FINE: FIDELITY IMPOSED NETWORK EDIT FOR 

SOLVING ILL-POSED IMAGE RECONSTRUCTION 

5.1 Abstract 

Deep learning (DL) is increasingly used to solve ill-posed inverse problems in 

medical imaging, such as reconstruction from noisy and/or incomplete data, as DL 

offers advantages over conventional methods that rely on explicit image features and 

hand engineered priors. However, supervised DL-based methods may achieve poor 

performance when the test data deviates from the training data, for example, when it 

has pathologies not encountered in the training data. Furthermore, DL-based image 

reconstructions do not always incorporate the underlying forward physical model, 

which may improve performance. Therefore, in this work we introduce a novel 

approach, called fidelity imposed network edit (FINE), which modifies the weights of 

a pre-trained reconstruction network for each case in the testing dataset. This is 

achieved by minimizing an unsupervised fidelity loss function that is based on the 

forward physical model. FINE is applied to two important inverse problems in 

neuroimaging: quantitative susceptibility mapping (QSM) and under-sampled image 

reconstruction in MRI. Our experiments demonstrate that FINE can improve 

reconstruction accuracy. 
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5.2 Introduction 

Image reconstruction from noisy and/or incomplete data is often solved with 

regularization of various forms, which can be formulated as maximum a posteriori 

(MAP) probability estimation [113]. Traditionally, these regularizations promote 

desired properties with explicitly extracted image features, such as image gradients or 

wavelet coefficients [114-117]. Deep learning (DL) using a convolutional neural 

network (CNN) of many layers has demonstrated superior capability in capturing 

image features compared to explicit feature extraction and achieved tremendous 

success in a wide range of computer vision applications [118, 119][cite]. Accordingly, 

CNNs have recently been used in image reconstruction [120-122]. 

A fundamental concern on the performance of a trained DL model in predicting 

outcome for previously unseen test data is the generalization error [123]. While CNNs 

can perform well with low generalization errors, their robustness remain concerning, 

with open questions [124], including their susceptibilities to adversarial attacks [125]. 

Considering image reconstruction as a very high dimensional regression task, 

generalization errors may inevitably occur at some voxels in CNN based image 

reconstruction. It is therefore important to investigate the performance of CNN-based 

image reconstructions when test data deviate from training dataset, due to for example 

abnormal morphology or the presence of pathology, or when test data contains 

adversarial noise.  
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To improve the robustness of network-based image reconstructions, the use of the 

underlying physical model of the forward problem has been explored. One approach 

is to use the network output as a regularization in the standard MAP optimization 

reconstruction of the test data [126], which maintains data fidelity of the test data but 

may suffer when the network output is not sufficiently close to the true solution. 

Another approach is to incorporate the physical model into the network architecture 

[3, 127], which can improve reconstruction accuracy and reduce generalization error. 

In this paper, building on the U-Net architecture [25] as the reconstruction network, 

we propose to update the weights of a pre-trained U-Net for each case in the test 

dataset by minimizing an unsupervised fidelity loss function. The fidelity loss is 

defined according to the forward physical model and data noise property. We refer to 

this method as fidelity imposed network edit (FINE). We report FINE results on two 

neuroimaging reconstruction problems using U-Net, quantitative susceptibility 

mapping (QSM) [128] and MRI reconstruction from under-sampled k-space data. 

5.3 Theory 

A major challenge in medical image reconstruction is to invert an ill-posed system 

matrix 𝐴 of a known physical process in the presence of data noise 𝑛: 

𝑦 = 𝐴𝑥 + 𝑛,                                [5.1] 

where 𝑥 is the desired image and 𝑦 the measured data. For example, in QSM, the 
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dipole kernel is zero on the cone surface defined by the magic angle, making the 

inversion from measured magnetic field to susceptibility source ill-posed [45, 128, 

129]. In under-sampled image reconstruction, the sampling mask contains many 

zeroes, making reconstruction of under-sampled data ill-posed. Additional prior 

knowledge is required to obtain a solution. The MAP inference approach provides an 

optimal estimation according to the measured data noise property and prior 

knowledge. Gaussian noise is observed in MRI complex data and is a widely-used 

approximate model for various other data. This leads to the common Bayesian 

reconstruction under Gaussian noise:  

𝑥̂ = argmin
𝑥

1

2
‖𝑊(𝐴𝑥 − 𝑦)‖2

2 +𝑅(𝑥),                   [5.2] 

where 𝑊 is the square root of the inverse of the noise covariance matrix, 𝑅(𝑥) is a 

regularization term that characterizes prior knowledge. The first term in Eq.2 is 

referred to as data fidelity. Eq.2 can be solved using numerical optimization 

procedures, such as the quasi-Newton method that iteratively linearizes the problem 

with each linear problem solved by the conjugate gradient method. Common choices 

for 𝑅(𝑥) include sparsity enforcement, such as Total Variation (TV) [27] or the L1 

norm in an appropriate wavelet domain [28]. These types of priors are critical for 

solving the ill-posed inverse problem. However, they can also limit the quality of the 

reconstruction, such as introducing artificial blockiness. 
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Fundamentally, regularization promotes desired image features, for which DL may be 

better suited than conventional explicit feature extraction. A data-to-image neural 

network model 𝜙(⋅;Θ0) with Θ0  the network weights can be trained in a supervised 

fashion based on training data consisting of pairs {𝛼𝑖 ,𝛽𝑖}, with 𝛼𝑖 the ground-truth 

image and 𝛽𝑖the input data. The weights at each convolutional layer, along with non-

linear activation functions, may be regarded as a collection of feature extractors for 

the desired image reconstruction [118, 130]. The large number of weights in DL may 

explain its advantage over explicit feature extraction that uses a single or few weights 

[131, 132]. Given a case in the test dataset or a test data point 𝑦, one can use this 

model to compute a reconstruction by evaluating the model on the observed 

measurement vector: 

𝑥̂ = 𝜙(𝑦; Θ0).                               [5.3] 

The supervised learning strategy described above may perform poorly if there is a 

structural change in the test data, such as a certain pathology that is not present in the 

training dataset. To improve the robustness of DL-based reconstruction, it has been 

proposed to treat the network output in Eq. 3 as a regularization in Eq. 2 penalizing 

the L2 difference between the network output and the final optimized solution [126]: 

𝑥̂ = argmin
𝑥

1

2
‖𝑊(𝐴𝑥 − 𝑦)‖2

2 + λ‖𝑥 − 𝜙(𝑦; Θ0)‖2
2.             [5.4] 

We refer to this reconstruction as DL with L2 regularization (DLL2). In another 
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recently proposed approach, the physical model is incorporated into the network 

architecture solving a quasi-newton optimization scheme [3, 127]. 

In this paper, we use a U-Net model as the reconstruction network and propose to 

exploit the data fidelity term directly in adapting the model through backpropagation 

without any explicit supervision. Specifically, the desired image 𝑥 is reconstructed by 

editing the weights of a pre-trained U-Net under the guidance of data fidelity for a 

given test data point 𝑦. The network weights Θ are initialized with Θ0  (obtained with 

supervised training) and are updated using the physical model of the imaging system 

as follows: 

Θ̂ = argmin 
Θ
𝐿(𝑦;Θ) =  ‖𝑊(𝐴𝜙(𝑦; Θ) − 𝑦)‖2

2.                [5.5] 

Then the output of the updated network is the reconstruction of 𝑥 with both data 

fidelity and deep learning regularization: 

𝑥̂ = 𝜙(𝑦; Θ̂).                               [5.6] 

We refer to this approach as “fidelity imposed network edit (FINE)” for solving an ill-

posed inverse problem using deep learning and imaging physics. 

5.4 Method 

In this paper, we applied the proposed FINE to two inverse problems in MRI: QSM 

and under-sampled image reconstruction. Data were acquired following an IRB 
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approved protocol. All images used in this work were de-identified to protect privacy 

of human participants. Data and code are available to interested researchers upon 

request. 

5.4.1 QSM 

First, we applied FINE to QSM [128], which is ill-posed because of zeroes at the 

magic angle in the dipole kernel. Consequently, streaking artifacts appear in the image 

domain after un-regularized dipole inversion [129]. The Bayesian approach has been 

widely used to address this issue. One example is the Morphology Enabled Dipole 

Inversion (MEDI) method [45], which employs the following cost function: 

𝑥̂ = argmin
𝜒

1

2
‖𝑊(𝑑 ∗ 𝜒 − 𝑓)‖2

2 + 𝜆‖𝑀𝐺∇𝜒‖1 ,            [5.7] 

with 𝜒 the susceptibility distribution to solve, 𝑓 the field measurement, 𝑑 the dipole 

kernel. The regularization is a weighted total variation, with ∇ the gradient operator, 

𝑀𝐺 a binary edge mask determined from the magnitude image [45] which enforces 

morphological consistency between magnitude and susceptibility. 

Data acquisition and pre-processing 

MRI was performed on 6 healthy subjects using a 3T system (GE, Waukesha, WI) 

with a multi-echo 3D gradient echo (GRE) sequence. Detailed imaging parameters 

included FA = 15°, FOV = 25.6 cm, TE1 = 5.0 ms, TR = 39 ms, #TE = 6, ΔTE = 4.6 

ms, acquisition matrix = 256×256×48, voxel size = 1×1×3 mm3, BW = ±62.5 kHz. 
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The local tissue field was estimated using non-linear fitting across multi-echo phase 

data [116] followed by graph-cut based phase unwrapping [133] and background field 

removal [60]. GRE imaging was repeated at 5 different orientations per subject for 

COSMOS reconstruction [134], which was used as the gold standard for brain QSM. 

A second data set was obtained by performing GRE MRI on 8 patients with 

intracerebral hemorrhage (ICH) and 8 patients with multiple sclerosis (MS) at the 

standard supine orientation. ICH patient data was acquired using the same scanner 

and imaging parameters as above. MS patient data was acquired using a 3T system 

(Magnetom Skyra, Siemens Healthcare, Erlangen, Germany) and imaging parameters 

included FA = 15°, FOV = 24.0 cm, TE1 = 6.69 ms, TR = 49 ms, #TE = 10, ΔTE = 

4.06 ms, acquisition matrix = 256×256×48, voxel size = 1×1×3 mm3, BW = 260 

Hz/Px. 

A third data set was obtained by resampling the 2016 QSM challenge data [135] to 

1×1×3 mm3 voxel size to be consistent with our experimental setting. 

A final data set was obtaining by simulating 6 ICH brains. This was done by 

segmenting 6 hemorrhagic lesions from the patients of the second data set above 

(reconstructed using MEDI) and combining it with the 6 susceptibility maps from the 

multi-orientation data set described above (reconstructed using COSMOS). The 

corresponding local fields were generated using the dipole convolution forward 
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model, followed by adding Gaussian noise. 

Dipole inversion network 

We implemented a 3D U-Net [4, 136], a fully convolutional network architecture, for 

mapping from the local tissue field 𝑓 to susceptibility distribution. The convolutional 

kernel size was 3 × 3 × 3. 5 of the 6 healthy subjects with COSMOS data were used 

for training, with augmentation by in-plane rotation of ±15°.  Each 3D volume data 

was divided into patches of size 64 × 64 × 32, giving a total number of 12025 

patches for training. 20% of these patches were randomly chosen as a validation set 

during training. We employed the same combination of loss function as in [4] in 

training the network with Adam optimizer [37] (initial learning rate: 10−3, epochs: 

40), resulting in a 3D U-Net 𝜙(; Θ0). 

Fidelity Imposed Network Edit (FINE) for QSM 

After pre-training the network using 3D patches described above, for a given test data, 

a whole local field volume 𝑓 was fed into the network, and the network weights Θ0  

from pre-training were used to initialize the following minimization: 

Θ̂ = argmin
Θ

‖𝑊( 𝑑 ∗ 𝜙(𝑓;Θ) − 𝑓)‖2
2.                 [5.8] 

This minimization essentially fine-tuned the pre-trained dipole inversion 

network 𝜙(𝑓; Θ) to produce an output adapted for a given test field data 𝑓 that is 

consistent with the forward dipole model. Eq. 8 was minimized using Adam [37] with 
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initial learning rate 10−4.  FINE was stopped when the relative change of the 

unsupervised fidelity loss between two consecutive iterations fell below 5 × 10−3 . 

The final reconstruction of the fine-tuned network was 𝜒̂ = 𝜙(𝑓; Θ̂). 

FINE was compared with MEDI (Eq. 7) with 𝜆 = 0.001 [45] and with DLL2 (Eq. 4): 

𝜒̂ = argmin
𝜒

1

2
‖𝑊( 𝑑 ∗ 𝜒 − 𝑓)‖2

2 + 𝜆2‖𝜒−𝜙(𝑓;Θ0)‖2
2 ,        [5.9] 

with 𝜆2  =  0.01. 

Data analysis 

Root mean square error (RMSE), which measures general reconstruction error, high-

frequency error norm (HFEN), which measures the similarity at high spatial 

frequencies [61], and structural similarity index (SSIM), which quantifies image 

intensity, structural and contrast similarity between pairs of image patches [38], are 

used to quantify reconstruction accuracy on data with COSMOS or synthetic ground 

truth. For the healthy subjects, cross-validation was performed in which each 

COSMOS brain was selected as test data, leaving the other 5 brains as training 

dataset, resulting in 6 pre-trained U-Nets. U-Net trained by the first 5 healthy subjects 

was applied to the remaining experiments. For the MS patients, lesions were manually 

segmented by an experienced neuroradiologist (S.Z.) based on the corresponding 

T2FLAIR maps which were spatially registered to the magnitude of the GRE data.  

Deming regression [137] of all lesion mean values across patients were employed 
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between MEDI and the other three methods to get each pair’s linear relationship. For 

ICH patients, hemorrhagic lesions were segmented manually and their mean 

susceptibilities for each reconstruction method were calculated and compared. A 

reference-free metric to measure the blurring in images [138] was used to quantify 

tissue susceptibility reconstruction quality surrounding each hemorrhage (scores 

between 0 and 1, the less the better in terms of blur perception). For simulated ICH 

brains, the reconstructed QSM was compared with synthetic ground truth in terms of 

RMSE, HFEN and SSIM.  

5.4.2 Under-sampled reconstruction 

Second, we applied FINE to MRI reconstruction with under-sampled data. T2 

weighted (T2w) images were retrospectively under-sampled. A compressive sensing 

reconstruction using Total Variation (TV) regularization was used to reconstruct 

images from the under-sampled k-space data: 

𝑢̂ = argmin
𝑢

‖𝑈𝐹𝑢 − 𝑏‖2
2 + 𝜆 ‖∇𝑢‖1,               [5.10] 

where 𝑈 is the binary k-space under-sampling pattern, 𝐹 the Fourier Transform 

operator, 𝑏 the measured under-sampled k-space data, ∇ the 2D gradient operator, 𝜆 

a regularization parameter  and 𝑢 the image to be solved. 

Data acquisition and pre-processing 

We obtained real-valued T2w axial images of 237 MS patients and 5 glioma patients, 
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with 256 × 184 matrix size and 1𝑚𝑚2 resolution. For each MS patient, we 

extracted 50 axial 2D images from each volume, giving a total number of 11850 

images. For 5 glioma patients, we extracted 44 images with glioma tumors. The 

intensity range of each image was normalized to range [0, 1]. We obtained complex-

valued T2w sagittal images of fully-sampled subjects used in MoDL [3] as another 

dataset for experiments, with 256 ×  232 matrix size and 1𝑚𝑚2 resolution. A 

natural image dataset [139] resized to 256 × 184, which contained coast, forest 

highway, city center, mountain, open country, street and tall building images,  was 

also used in our experiments as another training data set. 

Under-sampled reconstruction network 

2D U-Net [25] was used as the network architecture for mapping from 𝐴𝐻𝑏 (where 

𝐴 = 𝑈𝐹  is the system matrix) to a fully sampled T2w image, where 𝑈 was chosen as 

a variable-density Cartesian random sampling pattern [140]. Two 2D U-Nets were 

employed, one for real-valued image reconstruction and the other for complex-valued 

image reconstruction, with complex-valued images represented by two separate real 

and imaginary channels, similar to [120]. The network was trained using a 3 × 3 

convolutional kernel. We used the 𝐿1 difference between the network output and 

target image as the loss function and the Adam optimizer [37] (initial learning rate: 

10−3, epochs: 100). For real-valued image reconstruction, 8800 images from 176 MS 

patients were used for training and 2200 images from 44 MS patients were used for 



94 

 

validation. 850 images from the remaining 17 MS patients and 44 images with tumor 

from glioma patients formed two test datasets. A variable-density sampling pattern in 

real-valued dataset was generated with acceleration factor 3.24. For complex-valued 

image reconstruction, we used the same training/test dataset as in MoDL [3], yielding 

training data dimensions in rows × columns × slices × coils as 256 × 232 ×

 360 ×  12 and test data dimensions as 256 × 232 ×  160 ×  12. The same 

variable-density sampling patterns used in MoDL [3] were applied here, resulting in 

an acceleration factor of 6. We used the same symbol 𝜙(⋅;Θ0) to represent both 

trained 2D U-Nets for conciseness. 

Fidelity Imposed Network Edit (FINE) for under-sampled reconstruction 

Test data 𝑏 for a test subject was obtained by under-sampling an axial T2w image of 

the subject using the same sampling pattern as in the pre-training step. Similar to Eq. 

8, we initialized the network weights Θ using Θ0  and updated them using the 

following minimization: 

Θ̂ = argmin
Θ

‖𝑈𝐹𝜙(𝐴𝐻𝑏; Θ) − 𝑏‖2
2,                 [5.11] 

which was solved using Adam with initial learning rate 10−4. FINE was stopped 

when the relative change of the data fidelity between two consecutive iterations fell 

below 10−4. The final FINE reconstruction for the T2w image was 𝑢̂ = 𝜙(𝐴𝐻𝑏; Θ̂). 

FINE reconstruction was compared with TV (Eq. 10) with 𝜆 = 0.001, U-Net, and 
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DLL2 (Eq. 4): 

𝑢̂ = argmin
𝑢

1

2
‖𝑈𝐹𝑢 − 𝑏‖2

2 + 𝜆2‖𝑢− 𝜙(𝐴
𝐻𝑏; Θ0)‖2

2,         [5.12] 

with 𝜆2  =  0.01, and MoDL with 10 repetitions of sub-blocks [3]. 

Data analysis 

Peak signal-to-noise ratio (PSNR) and SSIM are used to quantify reconstruction 

accuracy on all data. To test the stability of FINE with respect to the choice of 

network structure and optimizer details, we repeated FINE reconstructions with 

different initial learning rates (2 × 10−4 and 5 × 10−5 ), a second solver, RMSprop 

[141], and a second network structure, consisting of 5 convolutional layers with 32 

channels in layers 2-4 and ReLU activations. To test the dependency of FINE’s 

performance on the initial training dataset, we pre-trained multiple networks on either 

natural or MR images with a range of training sizes. To test the generalization ability 

of FINE compared to MoDL with respect to various test data noise levels, we applied 

FINE and MoDL to the MS test dataset with simulated Gaussian noise described 

above. To test the stability of FINE against adversarial attacks, we constructed various 

levels of adversarial noise following [142] and compared TV regularization 

reconstruction, U-Net, and FINE - the proposed method. Different levels of 

adversarial noise were selected from the intermediate solutions during the adversarial 

noise construction procedure as proposed in [142]. 
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5.5 Results 

5.5.1 QSM 

Healthy subjects 

QSMs of 2016 QSM challenge data reconstructed by MEDI, U-Net, DLL2 and FINE 

are displayed in Figure 5.1a, with COSMOS as ground truth. The RMSE was 69.08, 

74.19, 53.34 and 53.44, for MEDI, U-Net, DLL2 and FINE respectively. The 

corresponding SSIM was 0.9060, 0.9321, 0.9503 and 0.9483, respectively. The 

corresponding HFEN was 70.25, 65.47, 50.21 and 51.00, respectively. Figure 5.2 

shows the median relative change of the weights per layer in U-Net structure between 

Θ of FINE and Θ0  of U-Net reconstruction in Figure 5.1a. In this case, FINE 

changed predominantly the weights in high-level layers of U-Net (layers 1 through 5 

and layers 17 through 21). Quantitative metrics averaged among cross-validation 

experiments on COSMOS dataset are shown in Table 5.1, with FINE demonstrating 

consistently good performance. 

Simulated ICH brains 

QSMs of one simulated brain with ICH reconstructed by MEDI, U-Net, DLL2 and 

FINE are displayed in Figure 5.1b, with the simulated brain as ground truth. 

Hemorrhage was underestimated in U-Net, but were recovered progressively from 

DLL2 to FINE. MEDI and FINE had minimal reconstruction errors among all four 

methods. Quantitative metrics of all 6 simulated brains are shown in Table 5.2, with 
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FINE demonstrating one of the best performances. Mean susceptibility values (ppm)  

  

Figure 5.1. Comparison of QSMs (first row) and the corresponding difference maps 

(second row) of 2016 QSM challenge data reconstructed by MEDI, U-Net, DLL2 and FINE 

with COSMOS as ground truth. All methods showed similar performance. b) Comparison 

of QSMs (first row) and the corresponding difference maps (second row) of one simulated 

brain with ICH. Hemorrhage was underestimated in U-Net, but were recovered 

progressively from DLL2 to FINE. MEDI and FINE had minimal reconstruction errors 
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of hemorrhage lesions on 6 simulated ICH brains from each reconstruction method 

and ground truth were calculated, giving mean susceptibility values ± standard 

deviations: 0.57 ± 0.10, 0.27 ± 0.05, 0.41 ± 0.07, 0.60 ± 0.11 and 0.64 ± 0.10 for 

MEDI, U-Net, DLL2, FINE and ground truth, respectively. 

MS patients 

among all four methods. All images were displayed using a [-0.3, 0.3] ppm window except 

in insets in the third row, which used [-0.6, 1.5] ppm. 

 

Figure 5.2. Median relative change of the weights per layer in U-Net structure between 

weights of U-Net reconstruction (initialization) and FINE reconstruction in Figure 1b. 
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QSMs reconstructed by MEDI, U-Net, DLL2 and FINE for two representative MS 

patients are displayed in Figure 5.3a. MS lesions were depicted using four methods 

(solid arrows). Compared to MEDI, U-Net reconstruction showed reduced lesion 

contrast, which was improved using DLL2 and FINE. Deming regression of lesion 

susceptibilities between MEDI and each of the other three methods are shown in 

Figure 5.3b. Regression slopes for FINE (1.05, R2=0.8) and DLL2 (0.96, R2=0.79) 

were closer to unity than for U-Net (0.88, R2=0.74). In addition, the fine structure of  

FINE changed predominantly the weights in high-level layers of U-Net (layers 1 through 5 

and layers 17 through 21). 
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periventricular veins was shown more clearly on FINE and DLL2, as compared to 

MEDI or U-Net (hollow arrows). Despite the merits above, some shadow artifacts 

were introduced at the boundary of CSF in FINE. 

Figure 5.3. a) representative axial images from two MS patients, showing that FINE 

improves lesion appearance in reference to MEDI. From left to right: QSMs reconstruction 

by MEDI, U-Net, DLL2 and FINE, respectively. Lesions (solid arrows) near the ventricle  

were underestimated in U-Net, but were recovered progressively from DLL2 to FINE. The 

fine structure of periventricular veins was shown more clearly on FINE and DLL2, as 

compared to MEDI or U-Net (hollow arrows). Despite the merits, some shadow artifacts 

near the CSF were introduced in FINE. b) Deming regressions of all patients’ lesion mean 

values between MEDI and the DL based three methods, showing FINE improves the lesion 

susceptibility accuracy in reference to MEDI. All images were displayed using a [-0.15, 

0.15] ppm window. 
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ICH patients 

For ICH patients, QSMs reconstructed by MEDI, U-Net, DLL2 and FINE for a 

representative ICH patient are displayed in Figure 5.4. Hemorrhage was 

underestimated in U-Net, but were recovered progressively from DLL2 to FINE. 

Mean susceptibility values (ppm) of hemorrhage lesions on 8 ICH patients from each 

reconstruction method were calculated, giving mean susceptibility values ± standard 

  

Figure 5.4. QSM shown in three orthogonal planes in a representative ICH patient. From 

left to right: QSMs reconstructed by MEDI, U-Net, DLL2 and FINE, respectively. 

Hemorrhage was underestimated in U-Net, but were recovered progressively from DLL2 to 

FINE. All images were displayed using a [-0.15, 0.15] ppm window except in insets, which 

used [-0.6, 1.5] ppm. 
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deviations: 0.63 ± 0.09, 0.33 ± 0.10, 0.36 ± 0.10 and 0.55 ± 0.09 for MEDI, U-Net, 

DLL2 and FINE, respectively. In contrast to MEDI, which showed the highest mean 

susceptibility  

  

Figure 5.5. Reconstruction results of one image with glioma. From left to right: fully 

sampled ground truth, under-sampled k-space reconstruction by TV, U-Net, DLL2, MoDL 

and FINE, respectively. a) reconstructed image. b) magnitude of reconstruction error with 

respect to truth. c) zoomed in regions. TV suffered from modest structural error. U-Net 

suffered from substantial structural error (failure in the large uniform region of the 

glioma). DLL2 substantially reduced structural error in U-Net but still suffered modest 

error. MoDL also suffered modest structural error (arrow). FINE provided the most 

accurate reconstruction. 
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values inside lesions, U-Net and DLL2 had considerable underestimation of lesion 

susceptibility, while FINE gave results closest to MEDI. The blurring scores of tissues 

surrounding hemorrhagic lesions were 0.18 ± 0.02, 0.22 ± 0.03, 0.18 ± 0.02 and 0.18 

± 0.01 for MEDI, U-Net, DLL2 and FINE, respectively. MEDI, DLL2 and FINE had 

comparable sharpness surrounding hemorrhages, while brain tissue of U-Net 

surrounding hemorrhages was blurrier compared to that of the other three methods. 

5.5.2 Under-sampled reconstruction 

Single-channel real-valued image reconstruction 

  

Figure 5.6. a) PSNR metrics of two types of pre-training dataset with different number of 

images before and after FINE. b) SSIM metrics of two types of pre-training dataset with 

different number of images before and after FINE. Given the same size of pre -trained 

dataset, FINE trained on MR image dataset had better performance than trained on 

natural image dataset. FINE with 2200 MR images for pre-training had nearly identical 

performance to the one with 8800 MR images for pre-training shown in table 2. 
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T2w axial images with glioma reconstructed by TV, U-Net, DLL2, MoDL and FINE 

are displayed in Figure 5.5. TV suffered from modest structural error. U-Net suffered 

from substantial structural error (failure in the large uniform region of the glioma). 

DLL2 substantially reduced structural error in U-Net but still suffered modest error. 

MoDL also suffered modest structural error (arrow). FINE provided the most accurate 

reconstruction. Quantitative metrics regarding PSNR and SSIM of MS and glioma test 

datasets are shown in Tables 5.3 and 5.4, with FINE demonstrating the best 

performance. 

Using the Adam solver with different initial learning rates (2 × 10−4  and 5 × 10−5), 

or using a different solver (RMSprop) with initial learning rate 1 × 10−4  yielded  
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similar results on the MS test dataset, with average PSNRs: 40.30  ± 1.85, 39.97 ± 

1.85 and 39.86 ± 1.58, respectively and average SSIMs: 0.9858 ± 0.0056, 0.9868 ± 

0.0051 and 0.9863 ± 0.0048, respectively. Using a different structure for the pre- 

 

Figure 5.7. Reconstructions of one representative image with MS lesions at two noise 

levels (a: 𝜎 = 0.01, b: 𝜎 = 0.05). All the reconstructions became noisier as test data 

noise levels increase. Compared to MoDL, FINE reconstructions looked less noisy and had 

better depicted lesions. 
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trained network (5 convolutional layers) resulted in higher error on the MS dataset, 

with average PSNR of 37.22 ± 2.19 and SSIM of 0.9710 ± 0.0117. Changes in PSNR 

and SSIM (Table 5.3) by changing optimizers and learning rates were not statistically 

significant (p > 0.05), while those induced by a network architecture change were 

significant (p < 0.05). This indicates that the encoder-decoder structure of U-Net with 

low dimensional latent features was more efficient in image-to-image generation task. 

Multi-channel complex-valued image reconstruction 

The PSNR and SSIM of the TV, U-Net, DLL2, MoDL and FINE reconstructions in 

the complex-valued multi-coil T2w sagittal test images are shown in Table 5.5, 

indicating FINE and MoDL had the best performance. 

Table 5.1. RMSE, SSIM and HFEN for various QSM reconstructions averaged 

among cross-validation experiments in healthy subjects, with COSMOS as the 

ground truth reference (* denotes statistical significance for the comparison 

between MEDI/U-Net/DLL2 and FINE; p < 0.05). 

 RMSE SSIM HFEN 

MEDI 43.19 ± 2.59* 0.9645 ± 0.0036* 34.29 ± 3.29* 

U-Net 41.32 ± 1.81* 0.9737 ± 0.0015* 40.90 ± 1.87* 

DLL2 30.70 ± 2.34 0.9853 ± 0.0020 30.07 ± 2.51 

FINE 31.36 ± 1.81 0.9861 ± 0.0017 29.38 ± 1.90 
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Dependency of FINE performance on initial training dataset 

Figure 5.6 shows the reconstruction performance on the MS test dataset in terms of 

PSNR and SSIM as a function of training dataset type and size. The performance of 

FINE was improved as the size of the training dataset increased, whether training was 

performed on MR or natural images. In addition, the performance of FINE trained on 

natural images was below that of FINE trained on MR images, but was slightly better 

than end-to-end mapping trained on natural images without using FINE. It’s worth 

noting that FINE trained on 2200 MR images had nearly identical performance as that  

Table 5.2. RMSE, SSIM and HFEN for various QSM reconstructions of 6 simulated 

ICH brains (* denotes statistical significance for the comparison between MEDI/U-

Net/DLL2 and FINE; p < 0.05). 

 RMSE SSIM HFEN 

MEDI 27.13 ± 8.10 0.9256 ± 0.0312 20.18 ± 9.96 

U-Net 64.04 ± 5.99* 0.9380 ± 0.0195 63.37 ± 8.19* 

DLL2 49.06 ± 3.93* 0.9371 ± 0.0231 48.99 ± 7.05* 

FINE 25.67 ± 2.79 0.9480 ± 0.0310 25.53 ± 4.15 
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trained on 8800 MR images (Table 5.2), which indicates that FINE could reach 

optimal performance with less than 2200 pre-trained MR images. 

Dependency of FINE performance on noise. 

MoDL and FINE reconstructions on test data with added Gaussian noise (𝜎 = 0.01  

Table 5.3. PSNR and SSIM for real-valued T2w MS patient test dataset 

reconstruction. (* denotes statistical significance for the comparison between 

TV/U-Net/DLL2/MoDL and FINE; p < 0.05). 

 PSNR (dB) SSIM 

TV 38.11 ± 2.62* 0.9791 ± 0.0090* 

U-Net 32.55 ± 1.57* 0.9493 ± 0.0144* 

DLL2 37.17 ± 1.78* 0.9765 ± 0.0078* 

MoDL 40.98 ± 2.94 0.9874 ± 0.0063 

FINE 40.52 ± 1.86 0.9869 ± 0.0051 
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and 0.05) were deployed and reconstruction results of a representative T2w image 

 

Figure 5.8. Reconstructions of a representative T2w image without adversarial noise (a) 

and with adversarial noise (b-c). Artifacts in U-Net output increased as adversarial noise 

levels increased from (b) to (c). These artifacts were suppressed in both TV regularized 

and FINE reconstructions (arrows), which appeared more similar to their corresponding 

ground truth images (first column). 
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with MS lesions are shown in Figure 5.7. MoDL reconstructions appeared noisier than 

FINE and MS lesions contrast appeared higher in FINE. Quantitative metrics 

regarding PSNR and SSIM are shown in Table 5.6. Compared to MoDL, FINE 

showed similar performance for 𝜎 = 0.01, and improved performance for 𝜎 = 0.05. 

Stability of FINE performance against adversarial attack 

Two levels of adversarial noises (|𝑟1 | < |𝑟2 |) were generated on a specific T2w image 

of pre-trained U-Net, and FINE was applied after U-Net’s outputs. Reconstructions 

are shown in Figure 5.8 along with TV method as a comparison. Compared to U-Net 

Table 5.4. PSNR and SSIM for real-valued T2w Glioma patient test dataset 

reconstruction. (* denotes statistical significance for the comparison between 

TV/U-Net/DLL2/MoDL and FINE; p < 0.05). 

 PSNR (dB) SSIM 

TV 38.48 ± 2.16* 0.9756 ± 0.0098* 

U-Net 31.79 ± 1.46* 0.9228 ± 0.0229* 

DLL2 36.64 ± 1.57* 0.9653 ± 0.0115* 

MoDL 40.57 ± 2.28 0.9838 ± 0.0076 

FINE 40.88 ± 2.15 0.9831 ± 0.0080 
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outputs that suffered from adversarial attacks, FINE was able to effectively reduce  

those artifacts. 

5.6 Discussion and Conclusion 

Our results indicate that the proposed approach of fidelity imposed network edit 

(FINE) can be effective in reducing errors when using neural network models to solve 

ill-posed inverse problems in medical image reconstruction. FINE improves the 

fidelity of test data by adapting the weights of a pre-trained CNN through 

backpropagation according to the physical model for each case in the test dataset. 

Table 5.5. PSNR and SSIM for complex-valued T2w test dataset reconstruction. (* 

denotes statistical significance for the comparison between TV/U-Net/DLL2/MoDL 

and FINE; p < 0.05). 

 PSNR (dB) SSIM 

TV 39.52 ± 1.66* 0.9867 ± 0.0041* 

U-Net 28.75 ± 1.95* 0.9206 ± 0.0259* 

DLL2 38.95 ± 2.22* 0.9853 ± 0.0062* 

MoDL 43.16 ± 1.59 0.9922 ± 0.0026* 

FINE 42.93 ± 2.53 0.9898 ± 0.0051 



112 

 

Therefore, FINE offers two distinct benefits in solving the ill-posed inverse problem  

 

of reconstruction: the implicit regularization achieved via a pre-trained neural network 

model, and the physical model defined data fidelity. Compared to a conventional 

reconstruction with explicit total variation regularization, a supervised CNN (U-Net) 

reconstruction, and a CNN (U-Net) reconstruction with further explicit regularization, 

FINE can provide more accurate reconstruction as exemplified in QSM and under-

Table 5.6. PSNR and SSIM of MoDL and FINE reconstructions on MS test dataset 

with noise 𝜎 = 0.01  and 0.05 . (* denotes statistical significance for the 

comparison between MoDL and FINE; p < 0.05). 

 𝜎 = 0.01 𝜎 = 0.05 

 PSNR (dB) SSIM PSNR (dB) SSIM 

TV 36.03 ± 1.79* 0.9713 ± 0.0095* 29.89 ± 1.09* 0.9092 ± 0.0214* 

U-Net 32.19 ± 1.57* 0.9463 ± 0.0152* 28.27 ± 0.91* 0.8777 ± 0.0274* 

DLL2 36.54 ± 1.66* 0.9718 ± 0.0090* 30.52 ± 0.94* 0.9092 ± 0.0226* 

MoDL 37.64 ± 1.77 0.9757 ± 0.0085* 28.00 ± 0.54* 0.8558 ± 0.0319* 

FINE 37.51 ± 1.39 0.9795 ± 0.0058 31.57 ± 1.74 0.9428 ± 0.0170 
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sampled reconstruction (Figures 5.1, 5.3, 5.4 and 5.5). 

It is observed in FINE that updating network weights on test data improves the 

fidelity of the reconstruction. This FINE approach is closely related to prior work, 

deep image prior, which trains a DL network from scratch on a single data for inverse 

problems of denoising, super-resolution, and inpainting [143]. However, in FINE, the 

network is initialized to a pre-trained network, rather than trained from scratch and the 

iterative updating is stopped when the relative change in fidelity loss reaches a 

threshold. When to stop updating weights of a network remains an empirical question, 

which should be carefully evaluated for a given application and network structure; 

This work was done on U-Net networks for QSM and under-sampled image 

reconstruction. This FINE approach is also related to transfer learning that first trains 

a DL network on a base dataset and then uses the trained weights to initialize training 

on a target dataset [144]. However, in transfer learning, once the updated weights are 

found, they are fixed for the test datasets. Moreover, they require ground-truth/labels 

for the target dataset during training. In contrast, FINE updates the weights for each 

case in a test dataset using a loss function that is different from that in the initial 

training and is based on the forward physical model. Additionally, it does not require 

ground-truth/labels for the target datasets.  

The fidelity term in FINE is used in a generalized sense that it includes the physical 

forward model and other data characteristics. The core objective of FINE is to reduce 
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the generalization error in the neural network based reconstruction, which may stem 

from discrepancies, such as pathologies and abnormal morphology between training 

and test data. Increasing noise levels in the test data often results in decreasing PSNR 

and SSIM of the network reconstruction, which can be improved by FINE. The 

inadequacy of the commonly used U-Net can be improved by incorporating the 

physical model in a CNN as in MoDL (Aggarwal et al., 2019; Schlemper et al) or in 

iterative projections using many CNN sub-blocks [145]. However, MoDL still suffers 

from possible discrepancies between training and test data. As FINE updates network 

weights with respect to test data, FINE can outperform MoDL at high noise levels in 

the under-sampled reconstruction application we considered. However, FINE may not 

address U-Net’s structural inferiority to MoDL in the low noise case in Figure 5.7. 

There is substantial neuroimaging interest in QSM [72], including studies of the 

metabolic rate of oxygen consumption [146], brain tumor [147], deep brain 

stimulation [148], multiple sclerosis [149], cerebral cavernous malformation [150], 

Alzheimer’s disease [87], Parkinson’s disease [151], Huntington’s disease [152], and 

magnetic nanocarrier biodistribution [71]. As QSM needs prior information to execute 

the ill-posed dipole inversion, seeking a better image feature for regularizing 

reconstruction has continuously been a major development effort [46, 129, 135]. 

Mathematically, regularization should project out or suppress the streaking artifacts 

associated with granular noise and shadow artifacts associated with smooth model 
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errors [129]. Streaking artifacts have been effectively reduced using L1-type 

regularizations, but these techniques suffer from staircase artifacts or blockiness. 

Shadow artifacts have yet to be effectively suppressed, partly due to white matter 

magnetic anisotropy [59, 153]. These QSM reconstruction challenges may be 

addressed more effectively using sophisticated and complex image features [135]. 

Deep neural networks promise to provide the desired but indescribable complex 

image features. U-Nets have been used to map the tissue field into QSM [4, 5]. 

However, limited to the training data, these networks may not properly reconstruct 

new patterns not encountered in the training dataset. This is exemplified in Figure 5.4, 

where the hemorrhage, which was not present in training datasets obtained in healthy 

subjects, cannot be properly reconstructed by U-Net. MoDL overcoming structural 

limitation in U-Net and FINE overcoming network’s lack of fidelity of test data 

should be explored in future QSM reconstruction. 

Similar to QSM, image reconstruction from noisy under-sampled k-space data in MRI 

is also an ill-posed inverse problem and requires suitable regularizations to suppress 

artifacts associated with the under-sampling pattern. L1-type regularizations for MAP 

inference based reconstruction have been shown to be effective in suppressing noise-

like artifacts, but image quality suffers from blockiness. Using data fidelity with CNN 

image reconstructions have shown improvement in highly under-sampled data [3, 

127]. FINE promises improvements in image reconstruction of test data that differs 
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from the training set. The MRI under-sampling rate may be further increased in 

imaging situations of redundancy, including multiple contrasts [154], various 

magnetization preparations [155], and navigator motion tracking [156]. Deep neural 

network reconstruction with FINE as demonstrated here may be very promising to 

accelerate these imaging tasks. 

There are several limitations present in this work. First, FINE was shown to improve 

image reconstruction compared to neural network based reconstructions. However, 

the effectiveness of FINE has to be assessed for specific training regimes and network 

architectures. Network structures incorporating the physical forward model may be 

preferred for image reconstruction. FINE improvements on such network are yet to be 

demonstrated and may be limited to reducing effects of discrepancy between training 

and test data. Second, FINE updates iteratively the network weights by minimizing 

the fidelity loss of the test data. While FINE achieved high quality image 

reconstruction across data sets tested in this work, which included various pathologies 

and/or noise levels not seen in the training data, early stopping is necessary to avoid 

overfitting to noise. This was achieved using a stopping criterion based on the relative 

change between iterations and a fixed threshold. While empirical, this criterion lead to 

good performance of FINE reconstructions in the various data sets used in this work. 

Third, the computational cost of FINE is much higher than a single pass through a 

deep neural network, due to the additional network updating based on the iterative 
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optimization. The computational cost may be reduced by updating a subset of layers 

instead of the entire network in the optimization, as in transfer learning [157]. 

In summary, for each test case, data fidelity is used to update the neural network 

weights to improve reconstruction quality. This fidelity imposed network edit (FINE) 

strategy promises to be useful for solving ill-posed inverse problems in medical 

imaging. 
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CHAPTER 6. HOBIT: HYBRID OPTIMIZATION BETWEEN ITERATIVE 

AND NETWORK FINE-TUNING RECONSTRUCTIONS FOR FAST 

QUANTITATIVE SUSCEPTIBILITY MAPPING 

6.1 Abstract 

A Hybrid Optimization Between Iterative and network fine-Tuning (HOBIT) 

reconstruction method is proposed to solve quantitative susceptibility mapping (QSM) 

inverse problem in MRI. In HOBIT, a convolutional neural network (CNN) is first 

trained on healthy subjects' data with gold standard labels. Domain adaptation to 

patients' data with hemorrhagic lesions is then deployed by minimizing fidelity loss 

on the patient training dataset. During test time, a fidelity loss is imposed on each 

patient test case, where alternating direction method of multiplier (ADMM) is used to 

split the time consuming fidelity imposed network update into iterative reconstruction 

and network update subproblems alternatively in ADMM, and only a subnet of the 

pre-trained CNN is updated during the process. Compared to the method FINE where 

such fidelity imposing strategy was initially proposed to solve QSM, HOBIT achieved 

both performance gain of reconstruction accuracy and vast reduction of computational 

time. 



119 

 

6.2 Introduction 

Quantitative susceptibility mapping (QSM) is an imaging contrast in MRI to quantify 

tissue magnetic susceptibility values from estimated local tissue field data [43]. QSM 

provides biomarkers for tissues with iron, calcium and gadolinium[46] concentrations 

which can be used for clinical diagnosis, such as multiple sclerosis [158], intracranial 

calcifications and hemorrhages [83]. QSM is computed by inverting the following 

forward process: 

b = FHDFχ+ n                                                  [6.1] 

where 𝑏 is the estimated local tissue field from magnetic resonance phase imaging, χ 

is the tissue susceptibility to compute, F is the Fourier transform, D is the dipole 

kernel in k-space and n is the additive noise (assuming i.i.d. Gaussian for each 

voxel). With single orientation sampling, the dipole inversion problem from local 

field b to susceptibility χ is ill-posed since the zero-cone in the k-space dipole kernel 

produces dipole-incompatible field, which results in streaking and shadow artifacts of 

susceptibility [129]. 

Various methods have been proposed to resolve the ill-posedness of dipole inversion. 

Direct method truncated k-space division (TKD) modified the dipole kernel near the 

zero-cone to add dipole-incompatible field components [159]. Iterative method 

morphology enabled dipole inversion (MEDI) introduced a weighted total variation 
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regularization to suppress the streaking artifacts [45]. Oversampling method 

calculation of susceptibility through multiple orientation sampling (COSMOS) 

eliminated the zero-cone of the dipole kernel by a combination of multi-oriented 

fields [134]; therefore, COSMOS has been regarded as the gold standard 

susceptibility map. With the advance of convolutional neural network (CNN), deep 

learning (DL) has been introduced in QSM. A first deep learning method QSMnet 

built a 3D U-Net for field-to-susceptibility mapping using COSMOS as the training 

dataset, and was reported to porform better than TKD and MEDI [4]. Another deep 

learning method DeepQSM trained U-Net with synthetic field-susceptibility pairs [5]. 

Since then, more architectures have been proposed based on the backbone U-Net, 

xQSM [160] and folded attention U-Net [66]. 

Compared to conventional methods, DL QSM methods usually achieve fast and 

accurate reconstructions on test dataset, but when tested on the cases with pathologies 

not encountered during training, such as intracranial calcifications and hemorrhages 

with extreme susceptibility values, generalization error may be enlarged in those 

regions. The generalization error could show up as severely under-estimated 

susceptibility values of lesions in DL QSM. To overcome such limitation, several 

methods were proposed to improve the domain adaptation ability of DL QSM. 

QSMnet+ augmented the training dataset to a wider range of susceptibility in order to 

generalize the network better [161]. Probabilistic dipole inversion (PDI) adapted the 
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pre-trained network to different patient datasets using variational inference [14, 15]. 

Fidelity imposed network edit (FINE) deployed the fidelity loss of dipole inversion on 

each test case so that the generalization error of unseen lesions could be reduced  [11]. 

As one of the effective domain adaptation methods for DL QSM, FINE combines the 

advantageous robustness of iterative methods and implicit regularization of DL 

methods. Despite such merit, significantly increased computational time is needed  for 

FINE, which hinders its practical usage. In the work, we analyze existing issues of 

FINE and attempt to resolve them all with a newly proposed method derived from 

FINE: Hybrid Optimization Between Iterative and network fine-Tuning (HOBIT) 

reconstruction for fast QSM. We deployed ablation study of HOBIT and compared it 

with MEDI, QSMnet, QSMnet+, FINE and PDI on both in vivo and simulated 

hemorrhagic datasets. Superior reconstruction performance was achieved in HOBIT 

and reconstruction speed was vastly accelerated compared to FINE. 

6.3 Method 

6.3.1 Issues in FINE 

In FINE, a 3D U-Net [136] was pre-trained on the multi-orientation dataset of healthy 

subjects with COSMOS as labels to do supervised learning. When tested on each 

patient data without label, FINE adapted the pre-trained weights by minimizing the 

following fidelity loss in an unsupervised fashion: 
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||𝑊(𝐹𝐻𝐷𝐹χ − 𝑏)||2
2                                             [6.2] 

until the relative change of fidelity loss between two consecutive epochs fell below 

5 × e−3 , where W is the square root of the inverse of the noise covariance matrix. 

The vanilla FINE above has three major issues: 

• When performing FINE in subject, pathology-related domain adaptation 

information is not inherited when performing FINE in other subjects that have 

a similar pathology. 

• The whole network update of FINE is redundant, as lots of weights seldom 

change during network update (Figure 8.2 in FINE [11]). 

• Network update leads to slow update of the output susceptibility, requiring 

hundreds of epochs to converge. 

In the next section, we attempt to tackle the three issues above using the proposed 

method. 

6.3.2 HOBIT 

In HOBIT, we design a network architecture as shown in Figure 6.1, where a first 

dipole inversion network 3D U-Net fθ maps local field input 𝑏 to susceptibility 

output 𝜒0, then a slimmer network gψ consisting of five convolutional layers maps 
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𝜒0 and 𝑏 to the final susceptibility output χ1. COSMOS dataset of healthy subjects 

are used to pre-train 𝑓θ and 𝑔ψ with the following loss function: 

min
θ,ψ

∑||

NC

i=1

χ0
(i)− χT

(i)||1 + ||χ1
(i)− χT

(i)||1                                [6.3] 

where χ𝑇
(𝑖)

 is the i-th label/target from a total of 𝑁𝐶 COSMOS data points, χ0
(𝑖)

 and 

χ1
(𝑖)

 are predictions of 𝑓θ and 𝑔𝜓 . After pre-training, the following steps are deployed 

to resolve the three major issues of FINE described in section 6.1 point-by-point: 

• Domain adaptation to the patient dataset is accomplished by fine-tuning the 

COSMOS pre-trained network with a fidelity loss function on the patient 

training dataset: 

min
𝜃,𝜓

∑||

𝑁𝑃

𝑖=1

𝑊 (𝑖)(𝐹𝐻𝐷𝐹𝜒0
(𝑖)–𝑏(𝑖))||2

2 + ||𝑊(𝑖)(𝐹𝐻𝐷𝐹𝜒1
(𝑖)–𝑏(𝑖))||2

2     [6.4] 

where 𝑊(𝑖)  and 𝑏(𝑖)  are the i-th noise weighting matrix and input local field from a 

total of 𝑁𝑃 patient data points. Then during test per case, network refinement starts 

from those domain adapted weights. 

• After domain adaptation using Eq.8.4, 𝑓θ is fixed and only 𝑔𝜓  is refined for 

each test case in the patient test dataset. 

• Rewrite minimization of network reparametrized fidelity loss 

1

2
||𝑊(𝐹𝐻𝐷𝐹𝑔ψ(χ0,𝑏) − 𝑏)||2

2 as: 
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 𝑚𝑖𝑛𝜓,𝜒  
α

2
||𝑊(𝐹𝐻𝐷𝐹𝜒− 𝑏)||2

2  + 
1 − α

2
||𝑊(𝐹𝐻𝐷𝐹𝑔𝜓 (𝜒0,𝑏)  −  𝑏)||2

2 

s.t. χ = gψ(χ0,b),                                                                                      [6.5] 

where 0 ≤ α ≤ 1. Convert the constrained optimization problem in Eq. 6.5 as the 

augmented Lagrangian format: 

minψ,χ  
α

2
 ||𝑊(𝐹𝐻𝐷𝐹χ − 𝑏)||2

2  +  
1 − α

2
||𝑊(𝐹𝐻𝐷𝐹𝑔ψ(χ0,𝑏)  −  𝑏)||2

2 

        + 
ρ

2
||χ − 𝑔ψ(χ0,𝑏)  +  μ||2

2  −  
ρ

2
 ||μ||2

2 ,                                                     [6.6] 

where ρ is the penalty parameter and μ is the dual variable. Eq. 6.6 is then solved 

using alternating direction method of multiplier (ADMM) [30] iteratively in three 

subproblems: 

χ𝑛+1 = argmin
χ

α

2
||𝑊(𝐹𝐻𝐷𝐹χ − 𝑏)||2

2 +
ρ

2
||χ − 𝑔ψ𝑛(χ0,𝑏) + μ

𝑛||2
2, 

ψ𝑛+1 = argmin
ψ

1 − α

2
||𝑊(𝐹𝐻𝐷𝐹𝑔ψ(χ0, 𝑏) − 𝑏)||2

2 +
ρ

2
||χ𝑛+1 − 𝑔ψ(χ0,𝑏) + μ

𝑛||2
2 

μ𝑛+1 = μ𝑛 + χ𝑛+1 −𝑔ψ(𝑛+1) (χ0, 𝑏),                                  [6.7𝑎 − 𝑐] 

where subproblem Eq. 6.7a is the network output regularized least square problem 

which can be approximated with a few conjugate gradient (CG) iterations, 

subproblem Eq. 6.7b is the L2 regularized nonlinear least square problem with 

network reparametrization, which can be solved using first order adaptive gradient 

descent algorithm such as Adam [37]. 
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6.4 Results 

6.4.1 Data acquisition and preprocessing 

Multi-echo 3D gradient echo (MGRE) sequence was performed on 7 healthy subjects 

using a 3T GE scanner with 5 brain orientations, 256 × 256 × 48 acquisition matrix 

and 1 × 1× 3 mm3  voxel size. After data acquisition, raw field data of each scan  

was estimated via non-linear least square fitting of multi-echo phase data using 

Levenberg–Marquardt algorithm [44]. Phase wraps of raw field data were unwrapped 

using graph-cut based spatial phase unwrapping algorithm [162]. Background field of 

raw field data was then removed using projection onto dipole fields [60] to obtain 

local tissue field data 𝑏 as network's input. COSMOS gold standard as pre-training 

  

Figure 6.1. Network architecture in HOBIT. 𝑓θ  was the dipole inversion network 3D U-Net 

and 𝑔𝜓was a slimmer network with five convolutional layers. 𝑓θ  has a single input 𝑏 

while 𝑔𝜓  has 𝑏 and 𝑓θ ’s output χ0 concatenating together as its input to produce the 

final output χ1 . Only 𝑔𝜓  is adapted for each test case after training. 
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label was computed by aggregating multi-orientated local fields to do dipole inversion 

[134] . MGRE sequence was also performed on 7 intracerebral hemorrhagic (ICH) 

patients with single orientation and same scanning parameters as COSMOS dataset. 

Image processing procedures as above were deployed on ICH dataset, except for the 

COSMOS reconstruction step. Data were acquired following an IRB approved 

protocol. 

For COSMOS pre-training in Eq. 6.3, data of 5/2 subjects (25/10 brain volumes) were 

used as training/validation datasets with ±15∘ in-plane rotations for augmentation.  

Brain volumes were divided into 3D patches with patch size 64 × 64 × 32 and 

extraction step 21 × 21 × 11, generating 12074/5748 patches for training/validation. 

For ICH patient domain adaptation in Eq.6.4, whole brain volume data from 4/1 

  

Figure 6.2. (a): Reconstruction results of two test cases in ablation study ([-0.15, 0.15] 

ppm). DLL2 and HOBIT (α = 1.0,ρ = 60) suffered from shadow artifacts surrounding the 

hemorrhages (red arrows). (b): Fidelity costs of HOBIT with α = 0.5 (monotonically 

decreasing) and α = 1.0 (divergent) per ADMM outer loop. 
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subjects were used as training/validation datasets. Data from the remaining 2 patients 

were used as in vivo ICH test dataset. Simulated local fields were also obtained by 

applying forward model Eq. 6.1 to FINE reconstructed QSMs of ICH validation and 

test datasets, where 5 simulated local fields with different samples of Gaussian noise 

𝑛 were generated on each ICH patient, yielding 5/10 volumes as simulated ICH 

validation/test datasets. The purpose of these simulated ICH datasets was to provide 

ground truth (GT) for both ablation study on HOBIT and quantitative comparison 

among different methods. Peak signal-to-noise ratio (PSNR), root-mean-square error 

(RMSE), structural similarity index measure (SSIM) [38], high-frequency error norm 

(HFEN) [61] and shadow artifact quantification metric of ICH (𝑅𝐼𝐶𝐻 )  

  

Figure 6.3. Reconstruction results of two simulated test cases ([-0.15, 0.15] ppm). MEDI 

visually looked smooth. Under-estimation inside the hemorrhages in QSMnet was reduced 

in QSMnet+. QSMnet and QSMnet+ had shadow artifact issue surrounding the 

hemorrhages (red arrows). FINE, PDI-VI and HOBIT produced qualitatively better QSMs 
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[163] were used as quantitative metrics to evaluate reconstruction accuracy. 

6.4.2 Implementation details and ablation study 

For network training, 𝑓θ and 𝑔𝜓  were first trained with loss Eq. 6.3 on the COSMOS 

dataset using Adam optimizer [37] (learning rate 10−3, 60 epochs). 𝑓θ and 𝑔𝜓  were 

then adapted to the ICH patient data with loss Eq. 6.4 on the in vivo ICH dataset using 

Adam optimizer (learning rate 10−3, 200 epochs). In HOBIT, the number of outer 

loops in ADMM was fixed as 5, the relative change threshold of CG in Eq. 7 was 

10−10  with a maximum of 100 iterations, and the number of gradient descent in Eq. 

6.8 was 4 using Adam optimizer (learning rate 10−3). To determine the optimal 𝛼 

and 𝜌 in Eqs. 6.7a and 6.7b, we applied a grid search of 𝛼 ([0,1], interval 0.1) and 𝜌 

([10,100], interval 10) on the simulated ICH 

than the other methods. 
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validation dataset, yielding the optimal parameters 𝛼 =  0.5 and 𝜌 =  30. 

For ablation study, we compared HOBIT against a few methods below on the 

Table 6.1. Average quantitative metrics of 10 test simulated brains reconstructed 

by different methods in ablation study. Overall, HOBIT ( 𝛼 = 0.5,𝜌 = 30) 

performed the best. 

 PSNR (↑) RMSE (↓) SSIM (↑) HFEN (↓) 𝑅ICH (%↓) 

𝑔𝜓  (𝜒0 as 

input) 

31.63 68.28 0.9733 65.19 40.18 

𝑔𝜓  ((𝜒0, 𝑏) 

as input) 

33.65 57.29 0.9765 55.51 24.80 

DLL2 37.91 35.04 0.9854 30.84 27.66 

FINE on 𝑔𝜓  36.64 40.80 0.9711 41.89 9.81 

HOBIT (𝛼 =

1.0, 𝜌 = 60) 

35.88 44.20 0.9834 45.78 33.57 

HOBIT (𝛼 =

0.5, 𝜌 = 30) 

38.29 33.98 0.9834 32.12 7.99 
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simulated ICH test dataset. These methods included direct inference of domain 

adapted 𝑔𝜓  without and with input local field concatenation (denoted as 

𝑔ψ(χ0 as input) and 𝑔ψ((χ0, 𝑏) as input)), iterative reconstruction with 𝑔𝜓  as L2 

regularization (μ𝑛 = 0 in Eq. 6.7a, α =  1,ρ =  60, denoted as DLL2), FINE on 

domain adapted 𝑔𝜓  using fidelity loss Eq. 6.2 (denoted as FINE on 𝑔𝜓), and HOBIT 

with α =  1.0 and ρ =  60. Reconstruction results of two test cases are shown in 

Figure 6.2a. Quantitative metrics are shown in Table 6.1. All the methods resolved the 

under-estimation issue inside the hemorrhagic lesions. Compared to HOBIT with 

optimal α = 0.5 and ρ = 30, DLL2 and HOBIT with α = 1.0 and ρ = 60 suffered 

from shadow artifacts surrounding the hemorrhagic lesions (red arrows in Figure 6.2a, 

while 𝑔𝜓  and FINE on 𝑔𝜓  suffered from sub-optimal reconstruction accuracy. 

Fidelity costs Eq. 6.2 of HOBITs with two sets of parameters after each outer loop in 

ADMM are shown in Figure 6.2b. HOBIT with optimal α =  0.5 and ρ =  30 had 

monotonically decreasing fidelity cost. In contrast, HOBIT with α = 1.0 and ρ = 60 

suffered from divergence issue of fidelity cost. 

6.4.3 Simulated ICH 

HOBIT was compared with other dipole inversion methods on the simulated ICH test 

dataset. Reconstruction results of two test cases are shown in Figure 6.3. MEDI 

reconstructed piecewise constant QSMs which visually looked smooth. QSMnet had 

under-estimation issue inside the hemorrhages, which was reduced in QSMnet+. Both 
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QSMnet and QSMnet+ had shadow artifact issue surrounding the hemorrhages (red 

arrow in Figure 6.3). FINE, PDI-VI and HOBIT produced qualitatively better QSMs 

than the other methods. Quantitative metrics and computational time of each method 

are shown in Table 6.2. HOBIT had the overall best accuracy among all the methods. 

In terms of computational time per subject, QSMnet, QSMnet+ and PDI achieved the 

fastest GPU time of less than 1𝑠, while HOBIT was the fastest iterative method 

compared to MEDI (× 3.1) and FINE (× 31.6). 

6.4.4 In vivo ICH 

HOBIT was also compared with other methods on the in vivo ICH test dataset. In this 

dataset, no ground truth was provided as label; therefore, QSMs were compared 

qualitatively. Reconstruction results are shown in Figure 6.4. Similar to the simulation 

results in section 6.3, MEDI produced smooth QSMs on the in vivo test data too. 

QSMnet suffered from under-estimation inside the hemorrhagic lesions while 

QSMnet+ suffered from severe shadow artifacts surrounding the lesions (red arrows 

in Figure 6.4). FINE, PDI-VI and HOBIT had visually similar QSMs including 

hemorrhages without under-estimation and shadow artifacts and overall 

susceptibilities without over-smoothness. 

6.5 Discussion and Conclusion 

Motivated by analyzing and solving existing issues of FINE, we proposed HOBIT as 
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a novel hybrid iterative and DL reconstruction method for fast QSM. Ablation study 

showed the necessity of each building block/step in HOBIT for performance 

improvement. Experiments on both in vivo and simulated ICH test datasets showed 

that HOBIT achieved over 30 times acceleration on computational time than FINE. 

Meanwhile, superior reconstruction accuracy was obtained compared to the other 

methods including FINE. 
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CHAPTER 7. PHYSICS-BASED NETWORK FINE-TUNING FOR ROBUST 

QUANTITATIVE SUSCEPTIBILITY MAPPING FROM HIGH-PASS 

FILTERED PHASE 

7.1 Abstract 

Susceptibility-weighted imaging (SWI) has been used in clinical diagnosis to 

visualize the presence of susceptibility sources such as veins, calcifications and 

hemorrhage. The induced change in the tissue field can be sensitized by gradient echo 

(GRE) MRI. SWI is a post-processing method for GRE data designed to visualize 

these changes but does not provide a measurement of the underlying susceptibility. In 

the past decade, quantitative susceptibility mapping (QSM) has been developed with 

the express purposed to quantify tissue susceptibility by solving an ill-posed dipole 

inversion problem from GRE phase data. While phase is often available together with 

SWI, it is not suitable for conventional QSM reconstruction methods because this 

phase has been high-pass filtered (HPFP) as the part of the standard SWI pipeline. To 

nevertheless allow a quantitative analysis of this data, convolutional neural networks 

(CNN) have been proposed to predict QSM from HPFP images. Promising results 

demonstrate the feasibility of CNN-based HPFP to QSM prediction, but the 

generalization ability of these pre-trained networks remain to be evaluated. In this 

study, we tackle two common generalization issues that arise when using a pre-trained 
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network to predict QSM from HPFP: a) data with unseen voxel sizes and b) data with 

unknown high-pass filters which may be different from training. A network fine-

tuning step based on a high-pass filtering dipole convolution forward model is 

proposed to reduce generalization error of the pre-trained network. A progressive 

Unet architecture is proposed to improve prediction accuracy without increasing fine-

tuning computational cost. The proposed method shows improved robustness 

compared to the pre-trained network without fine-tuning when test dataset deviates 

from the training. 

7.2 Introduction 

Susceptibility-weighted imaging (SWI) [164] is an MRI method to visualize 

susceptibility sources which affect the tissue-induced magnetic field, such as veins, 

calcifications and hemorrhage. SWI is obtained by combining a high-pass filtered 

phase (HPFP) and magnitude images of gradient-echo (GRE) data to improve the 

visualization of tissue susceptibility differences. The HPFP image is computed as the 

angle of the complex division of the original GRE by its low-pass filtered version. 

This operation suppresses the background field which predominantly consists of low 

spatial frequency components and impedes clear visualization of the local tissue 

details [165]. SWI has been used in clinical applications such as stroke, 

cerebrovascular disease and neurodegenerative disorders [166]. 
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Although SWI has been widely applied for clinical practice, it does not allow a direct 

quantitative measurement of the underlying tissue susceptibility. A technique, called 

quantitative susceptibility mapping (QSM) [6], has been proposed to map tissue 

susceptibility by solving a dipole inversion problem from unfiltered complex GRE 

data. Typically in QSM reconstruction, the tissue-induced field map is first obtained 

by fitting the phase of complex multi-echo GRE signal [43, 44], after which 

background field removal is performed on the resulting total field map [60, 167-169]. 

Then a regularized dipole inversion is performed to estimate the underlying tissue 

susceptibility distribution [170-173]. 

To date, a large amount of SWI HPFP data has been collected for which the 

underlying complex GRE data is no longer available. Despite potential interest in 

their quantitative analysis, accumulated HPFP images are incompatible with QSM 

reconstruction due to the removal of the low spatial frequency components of the 

tissue field, which is known to be a suboptimal method for the removal of background 

field as it removes some of the tissue field as well. Thanks to the rapid development 

of convolutional neural networks (CNNs) in medical imaging, there is an increasing 

interest in recovering QSM from HPFP data in SWI using CNNs [174-176]. In one 

approach, a 3D Unet [68, 136] was applied to recover unfiltered phase data from 

HPFP data and compute QSM using the recovered phase data [175]. A second 

approach reconstructs QSM directly from HPFP data, either using a network 
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architecture with an edge prior and a cross dense block [174] or a generative 

adversarial network (GAN)[176]. These promising results were obtained with the 

assumption that training and test data were acquired with the same imaging 

parameters. However, generalization errors may manifest when inference is attempted 

on data from a different acquisition protocol, e.g., with different voxel size [174] and 

a different or unknown high-pass filter [175].  

To address the issue of generalization errors of the pre-trained HPFP-to-QSM 

network, we propose to incorporate the forward model combining dipole convolution 

and high-pass filtering operations into the network for test-time fine-tuning [7, 12]. 

We also design a network architecture called “Progressive Unet” which consists of 

concatenating multiple Unets during forward pass and fine-tuning only the last Unet 

for back-propagation. Using a Progressive Unet, we observed an improved 

performance with similar computational cost for fine-tuning compared to the standard 

Unet implementation. 

7.3 Method 

7.3.1 Data acquisition and preprocessing 

Data were acquired following an IRB approved protocol. All images used in this work 

were de-identified to protect the privacy of human participants. 
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Retrospective HPFP data 

Multi-echo 3D GRE data acquired in 30 multiple sclerosis (MS) patients on a clinical 

3T scanner (Siemens Healthineers) were retrospectively analyzed. The acquisition 

parameters were as follows: FA=15°, FOV = 24.0 cm, TE1 = 6.3 ms, TR = 50.0 ms, 

#TE = 10, ΔTE = 4.1 ms, acquisition matrix = 320 × 320 × 48, voxel size = 0.75 

× 0.75 × 3 mm3. The tissue field was estimated using non-linear fitting of the multi-

echo phase data [44], followed by phase unwrapping and background field removal 

[60]. QSM was reconstructed using Morphology Enabled Dipole Inversion (MEDI) 

[170]. The HPFP 𝑓𝐻𝑃𝐹  at TE4 = 22.7 ms was computed retrospectively as the phase 

of the original complex image of slice 𝑐 divided by its Hann low-pass filtering 𝐻𝐹𝐶 (·

): 

 𝑓𝐻𝑃𝐹 = ∠(
𝑐

𝐻𝐹𝐶 (c)
),                                                [7.1] 

18/2/10 of 30 patients were used as training/validation/test datasets. 3D patches with 

patch size 128*128*32 and extraction step size 90*90*10 were extracted for training 

and validation. Whole 3D volumes were fed into the network for testing. 

Prospective HPFP data 

3D GRE data was acquired prospectively in 9 healthy volunteers with both single-

echo (TE = 22.7 ms, TR = 50.0 ms) and multi-echo acquisitions using the same 3T 

Siemens scanner and imaging parameters identical to the retrospective HFPP dataset. 

HPFP and SWI images from the single-echo GRE data were generated prospectively 
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by the scanner software with unknown high-pass filter parameters. QSM was 

reconstructed from the multi-echo GRE data using the same pipeline as the 

retrospective HPFP dataset. This formed another test set with prospective HPFP 

inputs and the corresponding QSM references.  

Network pre-training and fine-tuning 

Network pre-training 

Inspired by [177], a progressive 3D Unet architecture with sequentially concatenated 

𝐾 = 4 Unets was constructed to predict QSM from HPFP (Figure 7.1). Nth Unet 

predicted an intermediate QSMn from the input consisting of QSMn-1 generated by 

preceding Unet unit and the original HPFP. The purpose of such architecture was to 

progressively refine the network prediction in an iterative way, mimicking the 

numerical optimization scheme with iterative update of target solution. In the 

progressive Unet, a sum of 𝐿1 losses between the output of each Unet and the QSM 

label was used to train the network with Adam optimizer [37] with learning rate 1e-3 

and 100 epochs on an RTX2080Ti GPU. In 3D Unet, each convolutional layer 

consisted of 3D convolution, batch normalization [178] and ReLU activation 

operations. Four levels of down-sampling with 32, 64, 128, and 256 output channels 

were used in 3D Unet to extract multiscale features. 

Physics-based fine-tuning 

During testing, the last Unet in the pre-trained network was fine-tuned using the 
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following high-pass filtering dipole convolution forward model on the whole 3D 

volume: 

 𝑙𝑜𝑠𝑠𝐹𝑇 =  ‖∠(
𝑚·𝑒𝑖

(𝑑∗𝑥)

𝐻𝐹𝐶 (𝑚·𝑒
𝑖(𝑑∗𝑥))

) − 𝑓𝐻𝑃𝐹 ‖
2

2

,    (2)  

where 𝑚 is the magnitude image at the corresponding SWI echo time, 𝑑 is the 

dipole kernel, 𝑥 is the QSM output of the last Unet with fixed input HPFP 𝑓𝐻𝑃𝐹  and 

QSM from the preceding Unet. As a result, 𝑓𝐻𝑃𝐹  is used in both network input and 

fine-tuning loss function in a self-supervised fashion. During fine-tuning, the relative 

cutoff frequency 𝐹𝐶 in 𝐻𝐹𝐶 (·) was selected as 1/2 of the largest in-plane matrix 

dimension (320). The loss function in Eq. 2 was backpropagated until the input of the 

last Unet to update the pre-trained weights of the last Unet alone. Adam optimizer 

with 1e-4 learning rate was used and fine-tuning was terminated when the relative 

change of 𝑙𝑜𝑠𝑠𝐹𝑇  in Eq. 2 between two consecutive iterations fell below 5×10−3 [7] 

or started to fluctuate. Because the network weights for the last Unet are updated 

specifically for the test data in question, network inference has an increased 

computational cost (12s per case on average) compared to a conventional Unet (0.6s 

per case on average), where only a single pass through the network (with fixed 

weights) is required.   
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7.3.2 Experiments 

Retrospective HPFP dataset with various 𝐹𝐶s 

To test how physics-based fine-tuning can improve the generalization ability of the 

pre-trained network to unknown Hann filters not seen during training, HPFP test data 

with various 𝐹𝐶s (1/4, 3/8, 1/2, 5/8 and 3/4) in the Hann filters was calculated. Same 

QSM labels were used to compute network prediction accuracy. During fine-tuning, 

𝐹𝐶 in Eq. 2 was fixed as 1/2 when tested on HPFP test data generated with any 𝐹𝐶, 

simulating practical situation of a priori unknown cutoff frequency. 

Retrospective HPFP dataset with various voxel sizes 

To test the generalization ability to voxel sizes not seen during training, multi-echo 

complex GRE data with the original in-plane voxel size 0.75 × 0.75 mm2 (matrix 

size: 320 × 320) was resampled to in plane voxel sizes 0.577 × 0.577 mm2, 0.938 

× 0.938 mm2, and 1.25 × 1.25 mm2 (matrix sizes 416 × 416, 256 × 256, and 192 × 

192, respectively), while slice thickness was kept the same. Resampling was  
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implemented as k-space zero-padding or truncation of the original complex data. 

QSM labels for each voxel size were computed from the resampled data following the 

same processing pipeline as the original data. During fine-tuning, voxel size used in 

the dipole kernel 𝑑 in Eq. 2 was modified accordingly. 

Prospective HPFP dataset 

To test the generalization ability of the proposed physics-based fine-tuning to 

unknown high-pass filtering process, HPFP and magnitude images computed by the 

scanner software from the single-echo GRE data were used in the fine-tuning loss Eq. 

2 and the same HPFP image was also fed into the network as input. The relative cut-

  

Figure 7.1. Proposed progressive 3D Unet architecture and its fine-tuning using high-pass 

filtering dipole convolution forward model. QSM prediction is progressively refined after 

each Unet during forward pass. Fine-tuning backpropagation is deployed only in the last 

Unet to save computational cost. 
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off frequency 𝐹𝐶 in Eq. 2 was fixed to 1/2. QSM from the multi-echo GRE data was 

used as reference for comparison. 
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Performance comparison 

The proposed progressive Unet with physics-based fine-tuning (Prognet-FT) was 

compared to the pre-trained progressive Unet (Prognet), pre-trained Unet (Unet) and 

Unet with physics-based fine-tuning (Unet-FT). For both retrospective HPFP datasets, 

root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), structure 

similarity index (SSIM) and high-frequency error norm (HFEN) metrics were used to 

quantify the QSM reconstruction accuracy [135] with boxplots for demonstration. For 

the prospective HPFP dataset, regions of interest (ROIs) in the left and right caudate 

nuclei (CN), globus pallidus (GP) and putamen (PU) were manually segmented and 

mean susceptibility values of these ROIs were computed and compared. 

Figure 7.2. Retrospective HPFP test case with cutoff frequency 𝐹𝐶s = 1/4, 3/8, 1/2, 5/8 

and 3/4 in Hann filters. 𝐹𝐶 = 1/2 was used in the training dataset as well as fine-tuning 

loss function Eq. 2. At 𝐹𝐶 = 1/2, visible over-estimation of GP in Unet reconstruction was 

reduced in Unet-FT, Prognet and Prognet-FT reconstructions (red arrows). At 𝐹𝐶 = 3/8, 

moderate image blurring and GP over-estimation in Unet and Prognet reconstructions 

were mitigated by Unet-FT and Prognet-FT (red arrows). At 𝐹𝐶 = 1/4, excessive image 

blurring was observed in Unet, Unet-FT, Prognet and Prognet-FT reconstructions. At 𝐹𝐶 

= 5/8 and 3/4, GP over-estimation in Unet was reduced in Unet-FT (red arrows). Slight 

under-estimation of GP was observed in Prognet and Prognet-FT (red arrows). 
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7.4 Results 

Figure 7.2 shows the predicted QSMs of one retrospective HPFP test case with 

𝐹𝐶 = 1/4, 3/8, 1/2, 5/8 and 3/4. At 𝐹𝐶 = 1/2 (i.e., 𝐹𝐶 used for training), a visible 

over-estimation of GP was observed in Unet reconstruction but was reduced in Unet-

FT, Prognet and Prognet-FT reconstructions (red arrows). At 𝐹𝐶  = 3/8, Unet and 

Prognet reconstructions suffered from moderate blurring besides GP over-estimation 

(red arrows), but both issues were mitigated by Unet-FT and Prognet-FT. At 𝐹𝐶 = 1/4,  
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all methods suffered from large performance degradation with excessive image 

blurring where fine-tuning was not able to improve the image quality. At 𝐹𝐶 = 5/8 

and 3/4, GP over-estimation was also observed in Unet but was reduced in Unet-FT 

(red arrows). Slight under-estimation of GP was observed in Prognet and Prognet-FT 

(red arrows). Figure 7.4a shows the boxplot of quantitative metrics across 10 test 

subjects with different 𝐹𝐶s. At 𝐹𝐶 = 3/8, 1/2, 5/8 and 3/4, the reconstruction accuracy 

of Unet and Prognet was consistently improved in Unet-FT and Prognet-FT with 

physics-based fine-tuning. Prognet slightly outperformed Unet both before and after 

fine-tuning. At 𝐹𝐶  = 1/4, the reconstruction accuracy of Unet and Prognet was 

dramatically decreased compared to the other 𝐹𝐶s and fine-tuning resulted in worse 

accuracy.  

Figure 7.3 shows the predicted QSMs of one retrospective HPFP test case with 

Figure 7.3. Retrospective HPFP test case with isotropic in-plane voxel sizes = 0.577, 0.75, 

0.938 and 1.25 mm. Voxel size = 0.75 mm was used for training. At voxel size = 0.75 mm, 

visible over-estimation of GP in Unet reconstruction was reduced in Unet-FT, Prognet and 

Prognet-FT reconstructions (red arrows). Besides GP over-estimation, increased image 

blurring were observed in Unet and Prognet as the test case voxel size increased (0.938 

and 1.25 mm), but were reduced in Unet-FT and Prognet-FT. Prognet reconstruction was 

less blurry than Unet. At voxel size = 0.577 mm, slight blurriness was observed in Unet 

and Prognet but was reduced in Unet-FT and Prognet-FT. 
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isotropic in-plane voxel size = 0.577, 0.75, 0.938 and 1.25 mm. At voxel size = 0.75 

mm voxel size (i.e., voxel size used for training), a visible over-estimation of GP was 

observed in Unet reconstruction but was reduced in Unet-FT, Prognet and Prognet-FT 

reconstructions (red arrows). At voxel size = 0.938 and 1.25 mm, besides GP over-

estimation in Unet reconstruction, increased image blurring was also observed with 

increased voxel size, while Unet-FT managed to reduce the blurriness and GP over-

estimation. Prognet reconstruction was less blurry than Unet and was improved in  
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Figure 7.4. Boxplot of quantitative metrics of two retrospective HPFP test datasets. a): 

cutoff frequencies 𝐹𝐶s = 1/4, 3/8, 1/2, 5/8 and 3/4 in test data Hann filters. b): isotropic 

in-plane voxel sizes = 0.577, 0.750, 0.938 and 1.25 mm. In a), at 𝐹𝐶 = 3/8, 1/2, 5/8 and 

3/4, the reconstruction accuracy of Unet and Prognet was improved in Unet-FT and 
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Prognet-FT. At voxel size = 0.577 mm, slight blurriness was observed in Unet 

and Prognet and was reduced associated with application of fine-tuning. Figure 7.4b 

shows the boxplot of quantitative metrics across 10 test subjects with different in-plane 

voxel sizes. Reconstructions of Unet and Prognet were consistently improved after 

physics-based fine-tuning at all voxel sizes tested in the experiment. Prognet slightly 

outperformed Unet both before and after fine-tuning at all voxel sizes. 

Figure 7.5a shows the predicted QSMs of two prospective HPFP test cases. For 

both cases, Unet and Prognet visually appeared blurry compared to the reference QSMs. 

The blurring was suppressed after fine-tuning in Unet-FT and Prognet-FT. Figure 7.5b 

shows the comparison of average ROI values across 9 test subjects. Unet and Unet-FT 

had under-estimation in CN and GP, while Prognet and Prognet-FT had slight under-

estimation in CN. 

7.5 Discussion and Conclusion 

In the present work we propose a physics-based network fine-tuning method to 

improve the generalization ability of reconstructing QSM from HPFP data using deep 

Prognet-FT. Prognet slightly outperformed Unet both before and after fine-tuning. At 𝐹𝐶 

= 1/4, all methods suffered from performance degradation and fine-tuning resulted in 

worse accuracy. In b), at all voxel sizes, the reconstruction accuracy of Unet and Prognet 

was improved in Unet-FT and Prognet-FT. Prognet slightly outperformed Unet both before 

and after fine-tuning. 
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learning. Experiments in both retrospective and prospective in vivo data demonstrate 

improved QSM reconstruction accuracy after fine-tuning when test dataset imaging and 

postprocessing parameters deviate from those encountered during training. 

The major contribution of our work is the utilization of the forward physical 

model or fidelity loss for test time fine-tuning to reduce generalization errors of deep 

learning. Such fidelity imposed network edit (FINE) approach was proposed in prior  
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work [7] for ill-posed dipole inversion using deep learning [4, 14, 15, 90, 179, 

180], and has been applied to related inverse problems such as water-fat separation [67] 

. Compared to dipole inversion, QSM reconstruction from HPFP data is a more ill-

posed inverse problem, due to properties of both the dipole kernel and the inherent 

incompleteness of the input data (Eq. 2). Unets have been used to map the filtered tissue 

field into QSM [174-176]. However, depending on the training data, these networks 

may not properly reconstruct features not encountered in the training dataset (for 

instance, different voxel sizes), or when the test data was generated with unknown filter 

parameters. The proposed fine-tuning step is designed to reduce generalization errors 

due to such domain shifts and overcome network’s lack of fidelity in the test data. 

In the present work we show that network fine-tuning results in improved 

accuracy of QSM reconstruction from HFPF data under small-to-moderate deviations 

of filter parameters relative to the training data (𝐹𝐶 = 3/8 and 5/8 in Figures 7.2 and 

7.4a). Possible explanation to this insensitivity is that high-pass filter parameters 

typically selected in practical setting impose very aggressive filtering, preserving only 

Figure 7.5. a) predicted QSMs of two prospective HPFP test cases and b) ROIs analysis 

averaged over 9 test cases. In a), compared to the reference QSMs, blurriness for both 

cases in Unet and Prognet was reduced after fine-tuning in Unet-FT and Prognet-FT. In 

b), all four methods had slight under-estimation in CN. Unet and Unet-FT had additional 

under-estimation in GP. 
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sparse details such as phase edges. Therefore, the exact detail of the low frequency 

suppression may be less important, leading to a low inconsistency between measured 

HPFP data and data predicted by a possibly inaccurate forward model. However, such 

explanation does not hold with more information filtered out (𝐹𝐶 = 1/4 in Figures 7.2 

and 7.4a), where under such a large test case deviation, excessive blurring in Unet and 

Prognet reconstructions was even exaggerated by fine-tuning, leading to worse 

reconstruction accuracy.   

Another advantage of the proposed approach is the progressive network 

architecture integrating the advantages of deep learning feature extraction and classical 

optimization iterative scheme. To this end, the identical Unet blocks were stacked 

successively to mimic the iterative steps of optimization algorithms [177]. By 

combining a few refining modules, the quality of the susceptibility distribution image 

derived from the incomplete HPFP data might be progressively improved through 

module iterations. Additionally, compared to Unet, the progressive Unet architecture 

does not increase the computational cost of the physics-based fine-tuning as only the 

last refining module is updated during test time. Our results suggest that such 

progressive architecture yields higher reconstruction accuracy compared to Unet in 

both pre-trained and fine-tuned networks.  

There are several limitations present in this work. First, the effectiveness of the 

progressive architecture needs to be assessed with respect to the number of the repeating 
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units. Second, the computational cost of fine-tuning (12s per case on average) is higher 

than a single pass (0.6s per case on average) through a deep neural network due to the 

additional network updating based on the iterative optimization. Efficiency of fine-

tuning also requires further analysis. Third, unrolled architecture needs to be 

investigated as another strategy incorporating physical model into deep learning. 

Unrolled network architectures have become popular in QSM-related research, with 

applications in multi-echo gradient echo sequence acceleration [9, 53, 180] and dipole 

inversion [181-183]. Unrolled networks are inspired by classical optimization schemes 

replacing hand-crafted regularizations with deep learning modules [184]. As a result, 

unrolled networks leverage both the advantages of forward physical model 

incorporation and progressive architecture. Future work should also include 

implementation of the unrolled architecture for QSM reconstruction from HPFP data. 

In summary, the physics-based fine-tuning strategy promises to be useful for 

solving ill-posed high-pass filtered dipole inversion inverse problem and reduce 

generalization errors of end-to-end neural networks. 
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CHAPTER 8. PDI: PROBABILISTIC DIPOLE INVERSION FOR 

ADAPTIVE QUANTITATIVE SUSCEPTIBILITY MAPPING 

8.1 Abstract 

A learning-based posterior distribution estimation method, Probabilistic Dipole 

Inversion (PDI), is proposed to solve the quantitative susceptibility mapping (QSM) 

inverse problem in MRI with uncertainty estimation. In PDI, a deep convolutional 

neural network (CNN) is used to represent the multivariate Gaussian distribution as 

the approximate posterior distribution of susceptibility given the input measured field. 

Such CNN is first trained on healthy subjects via posterior density estimation, where 

the training dataset contains samples from the true posterior distribution. Domain 

adaptations are then deployed on patient datasets with new pathologies not included in 

pre-training, where PDI updates the pre-trained CNN’s weights in an unsupervised 

fashion by minimizing the Kullback–Leibler divergence between the approximate 

posterior distribution represented by CNN and the true posterior distribution from the 

likelihood distribution of a known physical model and pre-defined prior distribution. 

Based on our experiments, PDI provides additional uncertainty estimation compared 

to the conventional MAP approach, while addressing the potential issue of the pre-

trained CNN when test data deviates from training. Our code is available at 

https://github.com/Jinwei1209/Bayesian_QSM. 
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8.2 Introduction 

 

Quantitative susceptibility mapping (QSM) [6] is an image contrast in MRI to 

measure the underlying tissue apparent magnetic susceptibility, which enables 

quantification of specific biomarkers such as iron, calcium and gadolinium [46]. The 

forward model of QSM in three dimensional image space is: 

𝑏 = 𝑑 ∗ 𝜒 + 𝑛                                                [8.1] 

where 𝜒 is the tissue susceptibility, 𝑏 is the measured local magnetic field, 𝑑 is the 

spatial dipole convolution kernel, and 𝑛 is the measurement noise. Dipole 

convolution can also be defined in k-space (Fourier space) as follows:  

𝑏 = 𝐹𝐻𝐷𝐹𝜒+ 𝑛                                              [8.2] 

where 𝐹 is the Fourier transform operator and 𝐷 is the point-wise multiplication 

operator with the dipole kernel in k-space. The k-space formulation is more 

computationally efficient because of the fast Fourier transform, so Eq. 8.2 is often 

implemented in practice. The standard deviation (SD) of the Gaussion noise 𝑛 is 

obtained by computing the variance of the least squares fit of the magnetic field b 

from the acquired multi-echo data [43]. The problem is to recover 𝜒 from 𝑏 due to 

the ill-posedness of the dipole kernel in QSM [46]. Two representative methods have 

been proposed to solve the QSM inverse problem. The first one is called COSMOS 
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(calculation of susceptibility through multiple orientation sampling) [134]. COSMOS 

relies on multiple orientation scans to calculate the susceptibility map with high 

accuracy. As a result, it has been used as the gold standard reference when developing 

new QSM algorithms. However, the drawback of COSMOS is that it requires at least 

three orientation scans, which is infeasible for clinical use. Another method called 

MEDI (morphology enabled dipole inversion) [45] was proposed to solve the QSM 

problem with a single orientation scan. MEDI uses a morphology-related 

regularization term and solves the following optimization problem: 

 𝜒̂ = argmin
𝜒

1

2
‖𝑊(𝐹𝐻𝐷𝐹𝜒− 𝑏)‖2

2 + 𝜆‖𝑀𝐺∇𝜒‖1 ,            [8.3] 

where 𝑊 is derived from the observation noise covariance matrix, 𝜆 is the tunable 

parameter of weighted total variation (TV) regularization with binary weighting 

matrix 𝑀 of susceptibility’s spatial gradients which only penalizes regions outside 

the brain tissue edges in order to suppress image-space artifacts introduced by dipole 

inversion. With efficient numerical solvers, MEDI generates reasonable susceptibility 

maps compared to COSMOS as a reference and requires only single orientation scan. 

From the Bayesian point of view, Eq. 8.3 belongs to the maximum a posteriori 

probability (MAP) estimation problem with the likelihood distribution defined as a 

multivariate Gaussian: 

𝑝(𝑏|𝜒) = 𝒩 (𝑏|𝐹𝐻𝐷𝐹𝜒, Σ(𝑏|𝜒))                                [8.4] 
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where 𝑛 ∼ 𝒩 (0, Σ(𝑏|𝜒)) with Σ(𝑏|𝜒) diagonal, and the prior distribution defined as 

the Laplace of the spatial gradient: 

𝑝(𝜒) ∝ 𝑒−𝜆‖𝑀∇𝜒‖1                                               [8.5] 

Based on Bayes’s rule, the full posterior distribution 𝑝(𝜒|𝑏) given the measured local 

field 𝑏 can also be estimated in principle, which will quantify the uncertainty in the 

solutions delivered and may have some clinical implications. In this paper, motivated 

by the posterior distribution estimation problem in QSM and advances in deep 

learning based density estimation techniques, we introduce a set of neural network 

parameterized distributions to learn an approximate posterior distribution of 

susceptibility 𝜒 for any given 𝑏 with an adaptive training strategy. We validate our 

method on both healthy subjects and patients and show good performance of the 

proposed method. This paper is extended from previously published work [15] at 

MIDL 2020. The additions include a detailed methodology section, comparisons to 

PDI-VI0 as another baseline in Figures 8.4 and Table 8.1, an experiment on multiple 

sclerosis patients in Figure 8.3, amortized versus subject-specific variational inference 

in Figure 8.5 and 8.6, uncertainty estimation evaluation in Figure 8.7, and the 

discussion section. 

8.3 Related Work 

In recent years, posterior distribution estimation in imaging inverse problems has 
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become a new topic in medical imaging [185, 186], in which variance of a random 

variable is provided from posterior distribution to measure the uncertainty of the 

solution. However, posterior distribution estimation requires a complicated or even 

intractable integral from Bayes formula. Therefore, approximate inference methods 

are used to reduce the computational cost and intractability of the problem. Markov 

chain Monte Carlo (MCMC) [187] and variational inference (VI [188])  are two 

classes of approximate inference approaches to the Bayesian estimation problem. In 

MCMC, Markov chain based sampling methods are used to generate random samples 

from the true posterior distribution in order to represent an empirical distribution 

which resembles the true distribution. MCMC is general in that it is able to achieve 

the exact inference given infinite computational time. However, in imaging inverse 

problems, the computational cost of MCMC for Bayesian estimation is often several 

magnitudes higher than that of the optimization method of MAP estimation, because 

of the curse of dimensionality [189]. In addition, convergence of Markov chain is 

hard to diagnose, raising concerns on the quality of the samples.  

An alternative approach is to use VI, in which an approximate distribution is proposed 

with tractable function form and unknown parameters, and an optimization algorithm 

is used (for example, expectation-maximization (EM) algorithm [190] to learn these 

parameters by minimizing the divergence between the true and approximate posterior 

distributions. After convergence, the approximate posterior distribution is expected to 
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represent the true posterior distribution. Compared to MCMC, VI is fairly efficient as 

the inference problem is reduced to the optimization problem with respect to the 

distribution parameters. However, VI may make the model less expressive and thus 

lead to suboptimal performance. Although more complicated approximate function 

has a better representation ability in some cases, it introduces higher computational 

cost. Such accuracy-computation trade-off cannot be achieved easily as the inference 

performance depends on the tricky design of the approximate distribution form. 

Due to advances in deep learning in the past few years, using deep neural network as 

the approximate function has become a new trend in VI. This is especially true for 

generative models such as variational auto-encoder (VAE) [191, 192], in which an 

encoder network is built to approximate the latent variable distribution conditioned on 

the observed data and a decoder network is built to represent the observed data 

distribution conditioned on the latent variable. In addition, because of the 

generalization ability of a deep neural network with millions of trainable weights, 

amortized formulation with regularization is applied on the training dataset to learn 

the network weights for faster inference on the test dataset than classic VI per data, 

but at the expense of lower precision [193]. As a result, this leads to a new trade-off 

between inference speed and amortization accuracy.  

Another topic related to posterior distribution estimation with deep learning are the 

deep generative models trained with maximum likelihood, such as autoregressive 
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[194] and flow models [195]. In these models, neural network parameterized models 

are built to deploy tractable maximum likelihood training and generate new samples 

after training. If the parameterized model family is highly expressive with enough 

training samples, maximum likelihood training is expected to learn parameters which 

fit to the true data density well and generate new data with high fidelity. 

Autoregressive and flow models differ from VAE in that exact likelihood is evaluated 

in the former while approximate evaluation is applied for the latter. Such tractable 

inference makes training simpler but models less expressive, except for flow models 

which provide a combination of tractability and high expressiveness. 

In this work, we propose to solve the posterior distribution estimation problem in 

QSM using a neural network parameterized distribution family by combining 

posterior density estimation from samples with posterior distribution approximation 

via VI for domain adaptation. Assuming multivariate Gaussian represented by a CNN 

as the posterior distribution of susceptibility given the input local field, a COSMOS 

[134] dataset of field susceptibility pairs were used as samples from the true posterior 

distribution to train such CNN with an MAP loss function. Applying the likelihood in 

Eq. 4 and prior in Eq. 5, the pre-trained CNN was adapted using VI posterior 

distribution approximation on different patient datasets which only contained input 

measured fields. Compared to MAP estimation MEDI [45] in Eq. 8.3 and other deep 

learning QSM methods, QSMnet [4] and FINE [11], the proposed method estimated 
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the full posterior distribution of susceptibility with uncertainty quantification, while 

achieving domain adaptations on various datasets. 

8.4 Method 

Based on the assumption that the pattern from field 𝑏 to 𝑝(𝜒|𝑏) is recoverable, a 

general distribution 𝑝𝑑𝑎𝑡𝑎(𝜒|𝑏) for any given 𝑏 can be approximated with a 

learning-based approach. To accomplish that, a set of parameterized distributions 

𝑞𝜓(𝜒|𝑏) using a neural network with parameters 𝜓 are introduced and learned on a 

cohort of datasets including healthy subjects and patients. In this work, we assume a 

multivariate Gaussian distribution with diagonal covariance matrix as the approximate 

posterior distribution, i.e., 𝑞ψ(χ|𝑏) = 𝒩(μ(χ|𝑏) , Σ(χ|𝑏)), and use a dual-decoder 

network architecture (Figure 8.1) extended from 3D U-Net [136] to represent 

𝑞𝜓(𝜒|𝑏), with dual decoder’s outputs representing mean 𝜇(𝜒|𝑏) and variance Σ(𝜒|𝑏) 

maps. 

8.4.1 Posterior Density Estimation 

The modeling process consists of two steps. The first step employs the COSMOS 

dataset. Since COSMOS provides gold standard QSM images based on multiple 

orientation scans, we can treat COSMOS field-susceptibility data pairs as the samples 

from the true posterior data distribution. Given the large number of samples, they 

define an empirical distribution as follows: 
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𝑝̂𝑑𝑎𝑡𝑎(χ|b) =
1

N
∑ 𝟏[χ = χi|b = bi]
N
i=1                  [8.6] 

where (bi, χi) is the i-th susceptibility-field data pair sampled from pdata(χ|b) with 

total N samples, and 𝟏[⋅] is the indicator function. We use Kullback– Leibler (KL) 

divergence as the loss function to measure the distance between the empirical 

distribution defined by the COSMOS samples and the parameterized approximate 

distribution defined by the network, i.e., KL[p̂data(χ|b)||qψ(χ|b)] which is 

equivalent to the following loss function: 

KL[p̂data(χ|b)||qψ(χ|b)] = Σi=1
N − lo g qψ (χi|bi) +   H(p̂data)      [8.7] 

where the first term computes the expectation of negative log posterior density with 

respect to the empirical distribution and the second term is the entropy of the 

empirical distribution. Since the second term does not include the learnable 

parameters ψ, only the first term is used during parameter learning. Notice that 

training using this loss function is equivalent to maximizing the parametrized 

approximate posterior distribution by fitting to the dataset. Inserting qψ(χ|b) =

 𝒩(μ{χ|b} ,Σ{χ|b}) into the first term of Eq. 8.7 and removing the second term of 

entropy, we get the loss function of posterior density estimation with the COSMOS 

dataset: 

1

N
∑− lo g qψ(χi|bi)

N

i=1

=
1

𝑁
Σ𝑖=1
𝑁
1

2
(𝜒𝑖 − 𝜇𝜒|𝑏𝑖)

𝑇
Σ𝜒|𝑏𝑖
−1 (𝜒𝑖 −𝜇𝜒|𝑏𝑖) +

1

2
ln|Σ𝜒|𝑏𝑖 |. [8.8] 
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We refer to 𝑞𝜓(𝜒|𝑏) trained with the COSMOS dataset as Probabilistic Dipole 

Inversion (PDI). 

8.4.2 VI Domain Adaptation 

After training with the COSMOS dataset using Eq. 8.8 and obtaining the learned 

parameters 𝜓𝑜, we can simply estimate p(χ|b) as 𝑞𝜓𝑜(𝜒|𝑏) given a test local field 

𝑏. However, for a new test dataset that deviate from the COSMOS training dataset 

such as containing a new pathology, inferior outputs may be produced. To address 

this issue, 𝑞𝜓𝑜(𝜒|𝑏)  can be adapted by deploying VI on a subset of the new test 

dataset with only local field data needed in the loss function. Specifically, the pre-

trained approximation network 𝑞𝜓(𝜒|𝑏) with initial weights ψo  can be fine-tuned by 

minimizing the KL divergence between p(χ|b) and 𝑞𝜓(𝜒|𝑏): 

𝐾𝐿[qψ(χ|b)||p(χ|b)] 

 = E𝑞 [log qψ (χ|b) −   log p(χ|b)] 

                      = 𝐸𝑞 [lo gqψ (χ|b) − lo gp (χ,b)] + lo gp (b) 

= 𝐾𝐿[qψ(χ|b)||p(χ)] − 𝐸𝑞 [ log p(b|χ)]              [8.9] 

where the first term in the last equation imposes the approximate posterior to be 

similar to the prior, which works as the regularization term for training, and the 

second term encourages data consistency in the likelihood with the QSM foward 
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model. Constant term log p (b) is omitted in the last equation. Inserting the prior 

distribution in Eq. 8.5 and the likelihood distribution in Eq. 8.4 into the KL 

divergence in Eq. 8.9: 

𝐾𝐿[qψ(χ|b)||p(χ|b)] = −
1

2
𝑙𝑛Σ𝜒|𝑏 +

1

2𝐾
∑λ|

K

k=1

M∇χk|1 

+
1

2𝐾
∑(𝐹𝐻𝐷𝐹𝜒𝑘 −𝑏)

𝑇Σ𝑏|𝜒
−1 (𝐹𝐻𝐷𝐹𝜒𝑘 −𝑏)

𝐾

𝑘=1

                     [8.10] 

where −
1

2
𝑙𝑛Σ𝜒|𝑏  is derived from the entropy of qψ(χ|b) in 𝐾𝐿[qψ(χ|b)||p(χ|b)], 

−Eq[lnp (χ)] and −Eq[logp(b|χ)] are approximated through Monte Carlo (MC) 

sampling with K samples 𝜒𝑘’s from qψ(χ|b). The reparameterization strategy can be 

used to implement back-propagation [191], where samples from the standard Normal 

distribution were used to generate samples from the predicted susceptibility 

distribution by scaling and translating operations, in order to make the predicted 

susceptibility mean and variance map learnable through back-propagation. In VI 

domain adaptation, Eq. 8.10 is minimized across the new subjects. Once trained, the 

adapted qψ(χ|b) can be used to predict 𝜇(𝜒|𝑏)  and Σ(𝜒|𝑏)  for new test subject 

directly, which is the so-called amortized VI. We refer to the fine-tuned approximate 

distribution with Eq. 8.10 as PDI-VI. Amortized VI can also be deployed without any 

COSMOS pre-training, in which only the target dataset with single orientation local 

field maps is needed to learn the probabilistic dipole inversion network using Eq. 
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8.10. We refer to amortized VI without COSMOS pre-training as PDI-VI0. 

The amortized formulation of VI in Eq. 8.10 achieves fast inference during test time 

compared to the classic VI per case, but potentially at the expense of suboptimal 

performance [193]. This inference suboptimality can be explained as the inference 

gap, which can be decomposed as follows: 

𝐾𝐿[qψ∗(χ|b)||p(χ|b)]⏟              
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛  𝑔𝑎𝑝

+ 𝐾𝐿[qψ(χ|b)||p(χ|b)] −  𝐾𝐿[qψ∗(χ|b)||p(χ|b)]⏟                              
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛  𝑔𝑎𝑝

  [8.11] 

where 𝜓 and 𝜓∗ are obtained by amortized and subject-specific VIs of Eq. 8.10. As 

a result, KL[qψ(χ|b)||p(χ|b)] is decomposed into the two terms above: the 

approximation gap and the amortization gap. The approximation gap is determined by 

the capacity of the parameterized model family qψ(χ|b) to approximate the true 

posterior distribution. The amortization gap is determined by the ability of the learned 

variational parameters 𝜓 to generalize to a new test case. Initialized with the pre-

trained PDI from Eq. 8.8, we deployed and compared both amortized and subject-

specific VI for QSM posterior distribution estimation. 

8.4.3 Relation to VAE 

The proposed VI domain adaptation strategy in Eq. 8.9 resembles the unsupervised 

variational auto-encoder [191]. In VAE, the auto-encoder architecture is used to learn 

both the approximate inference network as the encoder for the latent space variable 𝑧 

conditioned on the input data 𝑥, and the generative network as the decoder of data 𝑥 
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given samples of 𝑧. 𝑥 is expected to be reconstructed from 𝑧. Evidence lower bound 

(ELBO) is used to approximate the log density of data 𝑥 by training the encoder and 

decoder simultaneously, where the optimal encoder of ELBO is the true posterior 

distribution of 𝑧 given 𝑥, at which point the ELBO is tight and equals the log density 

of data 𝑥. 

In the proposed PDI-VI strategy for QSM, the approximate posterior distribution is 

also a neural network "encoder" from the input field 𝑏 to the "latent" susceptibility 𝜒, 

whereas the "decoder" is no longer a neural network and does not need to be trained. 

Instead, this "decoder" is the likelihood distribution from the forward dipole 

convolution model with additive Gaussian noise in Eq. 8.4. In addition, the prior 

distribution of the "latent" variable 𝜒 in Eq. 8.5 also comes from the domain 

knowledge of solving the QSM inverse problem. From physics-based likelihood and 

prior distributions, the same ELBO loss function in Eq. 8.9 is applied. Therefore, the 

proposed PDI-VI combines the modeling principle of distribution approximation and 

learning in VAE with the domain knowledge from medical physics in QSM. 

8.4.4 Network Architecture 

The proposed network architecture of qψ(χ|b) is shown in Figure 8.1. This network 

is inspired by the widely used U-Net [25] for image-to-image mapping tasks in the 

biomedical deep learning field. The extension of the proposed architecture is to have 
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one downsampling and two upsampling paths, where each upsampling path generates 

the mean or variance map from the same compressed feature maps. Skip 

concatenations between downsampling and upsampling are applied for spatial 

information sharing and better gradient back-propagation. Loss functions in Eqs. 8.8 

and 8.10 are used for training on COSMOS and other datasets. For the loss function in 

Eq. 8.10, Monte Carlo sampling with reparameterization strategy is applied to 

stochastically optimizeqψ(χ|b). The 3D convolutional kernel size is 3 × 3 × 3. The 

numbers of filters from the highest feature level to the lowest are 32, 64, 128, 256 and 

512. Batch normalization [178] after each convolutional layer, and max pooling 

operation for downsampling and deconvolutional operation for upsampling are used. 

8.5 Results 

8.5.1 Data Acquisition and Preprocessing 

MRI was performed on 7 healthy subjects with 5 brain orientations using a 3T scanner 

(GE, Waukesha, WI) equipped with a multi-echo 3D gradient echo (GRE) sequence. 

The acquisition matrix was 256 × 256 × 48 and voxel size was 1 × 1 × 3  mm3. 

The input local tissue field data 𝑏 was generated by sequentially deploying non-linear 

fitting across multi-echo phase data [43], graph-cut based phase unwrapping [162] 

and background field removal [60]. A reference QSM reconstruction was obtained 

using COSMOS [134]. Two other datasets were obtained by performing single 
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orientation GRE MRI on 9 patients with multiple sclerosis (MS) and 7 patients with 

intracerebral hemorrhage (ICH), which were acquired using the same scanning 

parameters and image processing procedures as above, except for the COSMOS 

reconstruction step. Data were acquired following an IRB approved protocol.  

For the COSMOS dataset, data from 4/1 subjects (20/5 brain volumes) were used as 

the training/validation dataset, with augmentation by in-plane rotation of 15°. The 

brain volume data in the training and validation dataset was divided into 3D patches 

with patch size 64 × 64 × 32  and extraction step 21 × 21 × 1, generating 

9659/2874 patches for training/validation. Data from the remaining 2 subjects (10 

brain volumes in total) were used for testing. For the MS patient dataset, data from 

6/1 subjects were used as the training/validation dataset and data from the remaining 2  
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subjects were used for testing. For the ICH patient dataset, data from 4/1 subjects 

were used as the training/validation dataset and data from the remaining 2 subjects 

were used for testing. 

8.5.2 Implementation Details 

The loss function in Eq. 8.8 was applied for posterior density estimation on the 

COSMOS dataset with Adam optimizer [37] (learning rate:10−3, Number of epochs: 

60), yielding a trained network qψo (χ|b), denoted as PDI. Initialized with ψo, VI 

domain adaptations using the loss function in Eq. 8.10 were deployed on both MS and 

ICH datasets with Adam optimizer (learning  

Figure 8.1. The network architecture of the proposed method. Two upsampling paths' 

outputs represent mean and variance maps of susceptibility. The COSMOS dataset was 

used to perform posterior density estimation in Eq. 8.8. Domain adaptation VI with MC 

sampling in Eq. 8.10 were applied on other datasets. 

 

Figure 8.2. Reconstructions (first row, [-0.15, 0.15] ppm) and absolute error maps (second 

row, [0, 0.05] ppm) of one COSMOS test subject in one orientation, with COSMOS as the 
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rate:10−3, Number of epochs: 100), denoted as PDI-VI. VIs using Eq. 8.10 and 

without ψo initialization were also performed and compared for all datasets (Adam 

[37] learning rate:10−3, Number of epochs: 100), denoted as PDI-VI0. MC sampling 

size K in VI was chosen as 5 due to limited GPU memory. The hyperparameter λ in 

Eq. 8.10 was chosen as 20 to balance the streaking artifact suppression and over-

smoothing effect of TV regularization. While training and validation were 

implemented using 3D patches, whole brain volumes were fed into the network 

during COSMOS testing and all VI experiments. We implemented the proposed 

method using PyTorch (Python 3.6) on an RTX 2080Ti GPU. 

8.5.3 COSMOS Dataset 

For the COSMOS test dataset, we compared PDI (Eq. 8.8), PDI-VI0 (Eq. 8.10 

without PDI pre-training) and PDI-VI (Eq. 8.10 with PDI pre-training) to MAP 

estimation MEDI and two deep learning reconstructions  

gold standard. FINE achieved the lowest reconstruction error, while the other methods had 

comparable results. SD maps of PDI, PDI-VI0 and PDI-VI (third row, [0, 0.05] ppm) 

showed high uncertainties at the sagittal sinus and globus pallidus, which was consistent 

with their error maps. 
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QSMnet and FINE. Reconstruction maps of one orientation from one test subject are 

shown in Figure 8.2. Quantitative metrics of each reconstruction method averaged 

among 10 test brains are shown in Table 8.1. FINE gave the best overall quantitative 

results with the expense of significantly increased computational time. The other 

methods had comparable results. All deep learning methods achieved fast inference 

time on GPU except FINE. In Figure 8.2, error maps of PDI, PDI-VI0 and PDI-VI's 

mean outputs μχ|b matched their SD outputs, with high uncertainty/error located at 

the sagittal sinus and globus pallidus. The SD output of PDI-VI0 and PDI-VI were 

sharper than PDI with lower white-grey matter variation. 

 

Figure 8.3. Two MS patient reconstructions (first six columns, [-0.15, 0.15] ppm) and SD 

maps (last three columns, [0, 0.05] ppm). Lesions indicated by the red arrows near the 

ventricle had lower susceptibility values in QSMnet and PDI, but were recovered in FINE 

and PDI-VI. Compared to PDI-VI, lesions reconstructed by PDI-VI0 also had lower 

susceptibility. 
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8.5.4 Patient Datasets 

The reconstruction maps of two MS patients in the test dataset are shown in Figure 

8.3. Lesions indicated by the red arrows had susceptibility values lower in QSMnet 

and PDI than in MEDI, but were recovered in FINE and PDI-VI. Compared to PDI- 

VI, lesions reconstructed by PDI-VI0 also had lower susceptibility, which 

qualitatively indicated the advantage of the COSMOS dataset pre-training for PDI-VI. 

The QSMs for two ICH patients in the test dataset are shown in Figure 8.4. Compared 

to MEDI and FINE which had hyperintensity inside the hemorrhage, both QSMnet 

and PDI had lower susceptibility inside this region, which might result from the fact 

  

Figure 8.4. Two ICH patient Reconstructions (first six columns, [-0.15, 0.15] ppm) with the 

insets ([-0.6, 1.5] ppm) and SD maps (last three columns, [0, 0.05] ppm). Hemorrhage 

susceptibility was lower on QSMnet and PDI as compared to MEDI. This issue was 

reduced in FINE and PDI-VI. PDI-VI0 gave comparable hemorrhage reconstructions to 

PDI-VI. High variance inside the hemorrhage was consistent with high measured noise in 

the same region. 
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that such pathology was not encountered during training. After amortized VI domain 

adaptation, susceptibility value inside the hemorrhage was recovered in PDI-VI. 

Shadow artifacts surrounding the hemorrhage were also reduced in PDI-VI from PDI. 

PDI-VI0 yielded hemorrhage reconstructions that were comparable to PDI-VI. High 

SD map inside the reconstructed hemorrhage as shown in the last three columns of 

Figure 8.4 implied high reconstruction uncertainty of this region. 

8.5.5 Amortized vs Subject-specific VI 

 

Figure 8.5. (a) Reconstructions ([-0.15, 0.15] ppm) with the insets ([-0.6, 1.5] ppm) and 

SD maps ([0, 0.05] ppm) and (b) KL divergence values of two ICH test patients using 

amortized and subject-specific VIs. MEDI and FINE with TV were used for comparison. 

Although an almost zero amortization gap (Eq. 8.11) was achieved by amortized VI (b) for 

both cases, reconstruction quality at the hemorrhage center and surrounding hemorrhage 

was still marginally better for subject-specific VI. FINE with TV and subject-specific VI 
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The inference gap in Eq. 8.11 was investigated on two ICH test cases shown in Figure 

8.5, where subject-specific VI using Eq. 8.10 initialized from the weights of PDI was 

deployed with 100 iterations for convergence. MAP estimations in Eq. 8.3 of iterative 

reconstruction MEDI and network parametrized reconstruction FINE with TV (λ =

 20, 100 iterations) were also delpoyed for comparison. As demonstrated in Figure 

8.5a, both amortized and subject-specific VIs recovered the susceptibility value inside 

the hemorrhage from PDI in Figure 8.4. Compared to amortized VI, the susceptibility 

values at the center of hemorrhage (insets in Figure 8.5a) were further recovered and 

shadow artifacts surrounding the hemorrhage (red arrows in Figure 8.5) were reduced  

achieve comparably image quality. 

  

Figure 8.6. Value changes of three individual terms in Eq. 8.10 of subject-specific VI 

during iterations, with the value of amortized VI as a reference. The second term of TV 

regularization was slightly lower in subject-specific VI after convergence, while the other 
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in subject-specific VI. In addition, subject-specific VI had similar reconstructions to 

MEDI and FINE with TV for both test cases, which confirmed that the mean 

susceptibility map by subject-specific VI equals the MAP susceptibility maps by 

MEDI and FINE with TV. Figure 8.5b shows that KL divergence of Eq. 8.10 during 

subject-specific VIs converged to the value of amortized VIs with almost zero 

amortization gap (Eq. 8.11). Figure 8.6 shows the value changes of three individual 

terms in Eq. 8.10 during subject-specific VI iterations, where the second term 

(
1

2K
∑ λ|K
k=1 M∇χk|1) was slightly lower on average than the one of amortized VI for 

both test cases, which might contribute to the improvement of shadow artifact 

reduction. 

8.5.6 Uncertainty Map Evaluation 

To evaluate uncertainty estimation performance of the predicted SD map, absolute  

two terms were similar between amortized and subject-specific VIs. 
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error maps of PDI and PDI-VI's mean predictions to the ground truth susceptibilities 

were computed via simulation, then correlation between susceptibility SD and error 

maps was examined. Local field inputs were simulated from (a) COSMOS test data in  

  

Figure 8.7. PDI and PDI-VI's average absolute error maps (first two columns, [0, 0.05] 

ppm) through simulations and predicted SD maps (last two columns, [0, 0.05] ppm) of (a) 

healthy and (b) hemorrhagic brains. The SD maps resembled the error maps in both cases 

for PDI and PDI-VI. 
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Figure 8.2 and (b) FINE reconstruction of the ICH patient in Figure 8.4a through 

multi-echo data synthesization with additive noise, nonlinear field fitting and phase 

unwrapping. Details of the simulation steps are shown in Appendix A. Such 

simulation was repeated 100 times to generate 100 local fields as inputs to PDI and 

PDI-VI. 100 mean maps of PDI and PDI-VI were predicted accordingly to compute 

the average absolute errors. Figure 8.7 shows the average absolute error maps and 

Table 8.1. Average quantitative metrics of 10 test COSMOS brains reconstructed 

by different methods. FINE gave the best reconstruction at the expense of 

significantly increased computational time. The other methods had comparable 

results. 

 PSNR (↑) RMSE (↓) SSIM (↑) HFEN (↓) GPU time 

(s) 

MEDI 46.39 41.16 0.9569 31.30 17.54 

QSMnet 46.35 41.29 0.9705 43.31 0.60 

FINE 48.12 33.66 0.9789 31.97 65.42 

PDI 47.77 35.08 0.9772 35.17 0.61 

PDI-VI0 46.05 42.74 0.9704 42.27 0.61 

PDI-VI 46.31 41.51 0.9707 40.58 0.61 
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predicted SD maps of PDI and PDI-VI. In Figure 8.7a, large errors in the cerebral 

veins and sagittal sinus were reflected in the predicted SD maps for both PDI and 

PDI-VI, while in Figure 8.7b, large errors in the hemorrhage were also predicted in 

PDI and PDI-VI's SD maps, which demonstrates good correlation between the error 

map and the predicted SD map of the proposed method for uncertainty estimation. 

8.6 Discussion and Conclusion 

The adaptive learning strategy proposed in this paper tackles the domain adaptation 

challenge in medical imaging with deep learning from a probabilistic distribution 

refinement point of view. Since the high quality COSMOS samples are acquired only 

from healthy subjects, posterior density estimation with COSMOS samples may not 

generalize well to the patients with pathology not covered by the COSMOS dataset. 

As a result, even though the COSMOS pre-trained PDI performs well on COSMOS 

test dataset from the same distribution (Figure 8.2), inferior mapping happens 

evidenced by lower susceptibility values for lesions when applying PDI to the patients 

directly (Figures 8.3 and 8.4). Based on the distribution approximation principle, the 

pre-trained density estimation network PDI needs fine-tuning in order to fit to the 

patient data distribution as well. VI with KL divergence as a measure of  similarity 

between two distributions is used for approximate distribution refinement, which 

helps reduce the generalization error of PDI (Figure 8.3 and 8.4). However, in terms 

of other domain generalizations such as different imaging resolutions, PDI-VI with 
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KL divergence loss function for weight adjustment has not been tested and may suffer 

in accuracy, which will be explored in the future work. Another domain adaptation 

method FINE works better than PDI-VI (Figure 8.4) to reduce generalization error of 

the pre-trained network, since FINE fits to every test case by minimizing the fidelity 

loss, which has the major drawback of significantly increased computational time 

(Table 8.1). 

The relationship between PDI-VI (Eq. 8.9) and VAE [191] is described in the 

methods section. The key point is that the generative network (the decoder) from 

latent variable to data in VAE is replaced by a physics-based likelihood model (Eq. 4) 

in PDI-VI. This implies a general way of learning the posterior distribution of image 

data conditioned on the measured signal for any imaging modality, where a specific 

forward imaging model is used to form the "decoder" and only the "encoder" is 

learned with input measured signals in an unsupervised fashion like VAE. The 

training strategy of PDI-VI utilizes both widely available measured signals in clinic 

and well-defined imaging physical models to improve the reconstruction fidelity of 

the trained model. When gold standard reconstructions are available for training, as in 

the COSMOS dataset, combining direct conditional density estimation using high 

quality images with VI domain adaptation on measured input signals could improve 

the performance of VI trained on the measured signals alone (Figure 8.3).  

PDI defines a set of parameterized distributions using a neural network and learns 
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these parameters from samples to approximate the true distribution, where the 

expressiveness of the distribution family affects their approximation ability. The 

network architecture (Figure 8.1) is inspired by 3D U-Net, which was originally 

proposed for medical image segmentation tasks and has also been successfully used in 

deep QSM reconstructions [4, 5, 11], therefore such architecture should be expressive 

enough for field-to-susceptibility mapping. The COSMOS experiment indicates 

satisfactory image-to-image mapping ability of the proposed architecture (Figure 8.2 

and Table 8.1). The simulation experiment verifies correlation between the predicted 

SD map and the error map, indicating reasonable uncertainty quantification of PDI 

and PDI-VI. Despite such merits, the choice of variational posterior form in this work 

is simply a Gaussian distribution with diagonal covariance matrix, which is known as 

the mean field approximation for modeling and calculation simplicity in classic VI. 

This factorized Gaussian does not consider correlation between voxels in the 

reconstructed susceptibility map, but in view of the forward convolution operation 

(Eq. 8.1) which aggregates the global susceptibility into the measured field at each 

location, taking into account the dependency between local voxels in the susceptibility 

map may make the variational posterior more expressive. Possible options could be 

improving the Gaussian posterior with a non-diagonal covariance matrix and using an 

autoregressive [194] or flow-based [195] model to capture the dependency. 

The prior distribution of susceptibility (Eq. 8.5) used in PDI-VI comes from MEDI, 
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where weighted TV regularization was used to suppress streaking artifacts appeared 

on QSM dipole inversion. In general, the prior distribution p(x) captures the density 

of data x from a prior knowledge, where higher quality data x has a higher density 

value. In this sense, estimating the density from sufficient data may build a more 

comprehensive prior distribution and therefore become more efficient to regularize 

the inverse problem solution. In fact, learning the prior density for MAP estimation of 

the imaging inverse problem has been explored by [196] and [197] , where VAE and 

PixelCNN++ [198] were deployed to learn the explicit prior distribution of MR 

images. These deep prior approaches inspire us to extend our work in the future by 

learning and evaluating a prior density from data and inserting them into Eqs. 8.9 and 

8.10 for VI. 

The inference gap (Eq. 8.11) summarizes two types of errors when applying the 

amortized inference strategy. Amortized VI has the advantage of fast inference during 

test time. However, it has slightly worse visual quality inside and surrounding the 

hemorrhage than subject-specific VI (Figure 8.5a). Even though an almost zero 

amortization gap was achieved (Figure 8.5b), the regularization term of KL 

divergence (Eq. 8.10) was still better imposed in subject-specific VI, which may 

contribute to its better reconstruction of the hemorrhage. However, such advantage 

comes at a cost of extra inference time. To accelerate the inference speed of subject-

specific VI, optimizing the initialization of variational parameters is useful to reduce 
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the number of VI optimization steps. Meta-learning [195, 199] may be applied to 

optimize the optimization process of VI per data, where a learner can be designed 

during pre-training to learn an inference algorithm that generalizes well to the data of 

interest. 
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CHAPTER 9. FUTURE DIRECTIONS AND CONCLUSION 

9.1 Future Directions 

Using physics-based deep learning methods to solve data sampling, image 

reconstruction and biophysical inverse problems such as QSM is an active research 

area in MRI. Future work based on this thesis includes both continuing 

methodological development and clinical applications: 

9.1.1 LARO for CMRO2 mapping  

It has been shown to be feasible to map the cerebral metabolic rate of oxygen 

(CMRO2) by estimating the oxygen extraction fraction (OEF) from complex mGRE 

data [200]. mGRE acceleration is accomplished by LARO in chapter 3. Future work 

includes accelerating arterial spin labeling (ASL) sequence using LARO to obtain 

cerebral blood flow (CBF) for CMRO2, or/and developing a hybrid sequence 

combining mGRE and ASL acquisition in a single scan. 

9.1.2 mcLARO for Susceptibility Source Separation 

Susceptibility source separation can be solved based on a R2’ model of positive and 

negative susceptibility sources [201]. T1, T2, T2* and QSM mapping by mcLARO in 

chapter 4 is a time-efficient sequence for both R2’ mapping and mGRE complex 

signal acquisition. Future work includes validating mcLARO with susceptibility 

source separation. 
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9.1.3 SPARKLING sampling + LARO 

In LARO, binary sampling pattern is generated from the learned probabilistic 

sampling density through independent Bernoulli sampling at each phase encoding 

location. However, it has been shown that a locally uniform k‐space coverage 

improved reconstruction performance [202], which has not been considered in LARO 

yet. Future work includes combining LARO with SPARKLING. 

9.1.4 Probabilistic diffusion models + LARO 

There is currently an increasing interest in adopting denoising diffusion probabilistic 

models (DDPMs) into deep learning MR reconstruction [203, 204]. Future work also 

includes combining LARO with DDPM for LARO. 

9.2 Conclusion 

This thesis focused on solving MR data sampling, image reconstruction and QSM 

inverse problem using physics-based deep learning methods. Results showed that 

deep learning methods with physical models managed to improve the performance of 

the above tasks. 
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