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Abstract

A popular estimator of the index of regular variation in heavy tailed models is Hill’s esti-
mator. We discuss consistency of Hill’s estimator when it is applied to certain classes of heavy
tailed stationary processes. One class of processes discussed consists of processes which can be
appropriately approximated by sequences of m-dependent random variables and special cases of
our results show the consistency of Hill’s estimator for (i) infinite moving averages with heavy
tail innovations, (ii) a simple stationary bilinear model driven by heavy tail noise variables, (iii)
solutions of stochastic difference equations of the form

Y, =AY, 1+ 7, —oco<t<oo

where {(An, Z,), —00 < n < oo} are iid and the Z’s have regularly varying tail probabilities.
Another class of problems where our methods work successfully are solutions of stochastic differ-
ence equations such as the ARCH process where the process cannot be successfully approximated
by m-dependent random variables. A final class of models where Hill estimator consistency is
proven by our tail empirical process methods is the class of hidden semi-Markov models.

1 Introduction.

This paper discusses how to estimate the Pareto index or the index of regular variation for stationary
dependent sequences. If {X;, —0o0 < t < oo} is a stationary time series with the property that

PX; >z]~2"%L(z), z— oo,

L being a slowly varying function, then a key question in tail estimation is how to estimate the
index a. A popular estimator which arose in the iid context as a conditional maximum likelhood
estimator is Hill’s estimator (Hill (1975)) which is defined as follows: For 1 <4 < n, write X(;) for

the i-th largest value of Xy, X5, ..., X,,. Hill’'s estimator based on the observations Xy,..., X, is
k
HL. ==Y 1o (1.1)
nok ; X(e+1)
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This estimator has been well studied when {X,} is iid (Hall (1982), Mason (1982, 1988), Mason
and Turova (1994), de Haan and Resnick (1996), Geluk et al (1996), Davis and Resnick (1984),
Hausler and Teugels (1985), Resnick and Starica (1996a)) and our goal here is to better understand
its behavior when it is applied to stationary dependent sequences. Related papers which study
Hill’s estimator in the dependent case are Hsing (1991), Rootzen et al. (1990), Rootzen (1995).

A great deal of time series analysis has been based on the assumption that the structure of the
series can be described by linear models. In the traditional setting of a stationary time series with
finite variance every purely non-deterministic process can be expressed as a linear process driven
by an uncorrelated input sequence. From a second order point of view, linear models are sufficient
for data analysis. The situation is totally different when the stationary series has heavy tails and
perhaps infinite variance. In this case we have no such confidence that heavy tailed linear models
are sufficiently flexible and rich enough for modeling purposes and in any case, for heavy tailed
infinite order moving averages it is already known (Resnick and Staricd (1995) and see also Section
3) that Hill’s estimator is consistent. Thus in this paper we concentrate on non-linear models.

Linear models do not seem to describe adequately the underlying random mechanism when
heavy tails are present (Davis and Resnick (1995), Resnick (1996)). Insistence upon modeling heavy
tailed data with linear time series can be quite misleading (Feigin and Resnick (1996)). A popular
non-linear alternative to the linear model is the bilinear process introduced by Mohler (1973) and
considered by Granger and Andersen (1978). To date, little use has been made of bilinear models
in heavy tailed data analysis though Davis and Resnick (1995) present some evidence for their
relevance. Other worthy non-linear models which we consider are two classes of random coeficient
models, one of which includes the important example of the ARCH process (Engle (1982)) and
hidden semi-Markov models or random variables defined on a semi-Markov chain. Such models
have recently been used to fit times between packet transmissions at a terminal in the stimulating
paper by Meier-Hellstern et al (1991).

Section 2 presents two general theorems which can be applied to prove consistency of Hill’s
estimator for heavy tailed stationary sequences. Section 3 applies one of the theorems to the
case of processes which can be approximated by m-dependent sequences. Among the examples
considered are infinite order moving averages, simple bilinear processes and solutions of certain
random coefficient autoregressions. Section 4 applies the other theorem from Section 2 to a class of
random coefficient autoregressions which includes the first order ARCH process. This result yields
not only an estimator for the Pareto index of the ARCH process but also an estimator of one of
the scaling parameters. Section 5 deals directly with hidden semi-Markov models using Laplace
functional methods.

The tail empirical measure plays a central role in our approach to proving consistency of Hill’s
estiamtor. This method was also used in Resnick and Staricd (1995). For using this method, we
need the following notation. Let E := (0, cc] be the one point uncompactification of [0, oo] so that
the compact sets of E are of the form U¢, where 0 € U and U is an open set in [0,00). Suppose &
is the Borel o-field on E. Let M (E) be the space of positive Radon measures on E endowed with
the vague topology (Resnick (1987), Kallenberg (1983)). Let Ci(E) be the space of continuous,
non-negative functions on E = (0, oo] with compact support. The vague topology on M, (E) can
be generated by a countable family of semi-norms

H ={ps: Mi(E) —» Ry :ps(p) = u(f),[fI <1, f € CR(E)}
(Resnick(1987), Proposition 3.17, Lemma 3.11), turning M, (E) into a complete, separable, metric



space. Convergence of , € My (E) to o € My (E) in the vague topology is denoted p,, — pg. For

z € E and A € € define
lifz e A
€a(A) = {O,if zE A°T

2 General consistency results.

We now prove two general Hill estimator consistency results for heavy tailed stationary sequences.
The first, Proposition 2.1, is designed to be easily specialized for processes which can be approxi-
mated by m-dependent sequences and this specialization comes in Proposition 2.2. Proposition 2.3
is similar to Proposition 2.1 but is better suited for application to the ARCH model (cf. Section 4).
The proofs of Propositions 2.1 and 2.3 use the standard big block-little block technique explained
carefully and exploited in Leadbetter, Lindgren and Rootzen (1988). See also Hsing, Husler and
Leadbetter (1988) as well as Davis and Resnick (1988) where a parallel result for Poisson conver-
gence is given.

Proposition 2.1 Suppose for each n = 1,2,... that {X,;,1 > 1} is a stationary sequence of
random elements of E. Let {k = k(n)} be a sequence such that k — oo, n/k — co. Suppose {X,,;}
satisfies the following two conditions:

1. For any f € CL(E),

k
lim = > B (f(Xa1)f (Xns)) = 0. (2.1)

n—oo

2. For any sequence {l,,} such that l,, — 0o and
InJk—0 (2.2)
and intervals
L =[LE—1], Iy = [k+ 1,2k = L], .. ., Ipnyig = [([0/R] = D)k, [/ K]k — 1] (2.3)
we have for f € C3(E)
[n/k] 1 (/K] 1
Jlim E H exp{—E Zf(Xm)} — H E exp{—E Zf(Xm)} = 0. (2.4)
=1 i€l j=1 i€l

Assume also that

%P(Xml € ) 5. (2'5)

where v({z}) = 0 for any x € (0,00]. Then

1 n
Up 1= E;Q{m >v (2.6)



in My (E). Moreover if X,,; = X;/bn, 1 = 1,...,n, where {X,,n > 1} is a sequence of stationary
random variables and b, — oo and if v satisfies [~ log(u)v(du) < oo, it also follows that

X

=1 (k+1)

kit /1 " log(u)v(du). (2.7)

Remark: Condition 2.1 is implied by the condition that for any = > 0,

n—oo

k

.oon

lim w2 ZP[XnJ >z, X,,;>z]=0. (2.8)
i=2

This follows since if f € CE(E) and we set [c, 00] for the support of f and set ||f|| = supg f(2),
then

F < e 00

and

E(f(Xn1)f(Xn;)) < [IFIFP[Xny > €, X > .

Proof. Suppose f € C{(E). To show (2.6), it suffices to show (Kallenberg (1983), Resnick
(1987))

1 n
; N — (S
nIE%OEeXP{_E;f(XnJ)} = e, (2.9)
For typographical ease, we write f; = f(X, ;) and p = [n/k]. Then
L=AG—VDka+ 1, jkn—1n}, I ={jkn—1la+1,...,5ks}, j=1,...,p—1 (2.10)

and

L={(p—VDkn+1,...,0kn =L}, IJ={pkn—la+1,...,n}. (2.11)

We have

Bexp{~+ 3" ) - exp{-v(/)]}]

n p
<|Beoi-7Y ) - Een{- X X )
=1 j=1:€l;
1 1 ’
+ EGXP{—EZZJ[@'}— EeXP{_EZfi}
j=14€l; €l

p

p k
+ (Eexp{—%z:fi}) - (Eexp{—%?ﬁ'})

1€l

& P
+ (Eexp{—%gfi}) —exp{—l/(f)}‘

=I+I1II4+IIT+1V.



Let us look at the individual terms in turn.
We have

I< Eexp{——z Zf,—l— Zf,

J=1 \i€l; lEI*

<El- eXp{——Z > fl

7= 126[*

<ZZ LS

7= 126[*

l.n
<pl, Ef1 ~ ——Ef1

L
~ El/(f) — 07

as n — oo from (2.2) and (2.5). Term IIT is handled very similarly:

III<p|EeXp{—— Z fit — EGXP{—_Zsz

lEIl

<pE|l- eXp{—— > il

lEI*
In

Term IT goes to 0 because of condition (2.4).
For IV we set y; = 1 — exp{—1 f;} and observe

Lk k
EGXP{—EZ:fz}IEH(l - )

<1—EZyz+E S iy

1<e<3<k

<1-kEy + kZE@/Iyl
=2

k p »
(EGXP{_%Zﬁ}) < (1 _ kp(Ey — i E@/l@/l))
i=1

p

and thus

Now

kpz Eyiy~ nZE (1- eXP{__fl)(l - eXp{——fz)

=2 =2

,}ZEM -0



by (2.1). Also
1 n
kpEy, ~ nE(1 — eXp{—Efl} < EEfl — v(f)

and

2
nB(1 - exp{—+ £} 2B - Ty () - oy - ).

Thus we conclude

n—oo

Lk p
lim sup (E exp{—%Zf&) < e~ v,
=1

A slightly simpler argument gives

k p
lim inf (E exp{—%Zﬁ}) > )

=1

and this completes the proof of (2.9).

To prove (2.7) we make use of Proposition 2.4 of Resnick and Staricd (1995) which shows that
the convergence of the tail measure implies the consistency of Hill’s estimator.O

Proposition 2.1 will be applied primarily to proving consistency of Hill’s estimator for stationary
processes which can be approximated by truncated versions which are m-dependent. In order for
this approximation strategy to be successful, the truncated m-dependent approximation must carry
enough information about the tail behavior of the marginal distribution of the original process
{X:}. This is true of the processes considered in the examples Section 3 and false for certain
random coefficient models such as the ARCH process considered in Section 4. The adaptation of
Proposition 2.1 to processes which can be successfully approximated by m-dependent processes is
given next.
Proposition 2.2 Suppose for each n > 1, m > 1, {XT(:Z),i > 1} is a stationary sequence of m-
dependent random elements of E and for each n > 1, {X,,;,1 > 1} is a stationary sequence of
random elements of E. Suppose there ezist Radon measures v\™) on E and a sequence k = k(n),
k — oo and n/k — oo such that, for any fired m > 1

%P(ng;‘) € )L plm (2.12)

as n — 0o. Suppose further that
y(m) 2y (2.13)

as m — oo. Finally, assume that
lim lim sup %P(|XT(:11) —X,1|>€) =0, (2.14)

for all e > 0. Then
1 n
- Y ex, > v (2.15)
i=1

in M, (E).



Moreover if X,,; = X;/b,, t = 1,...,n, where {X,,,n > 1} is a stationary sequence, b,, — 00
and v satisfies [ log(u)v(du) < oo, then

Zlo

Proof. We first show that for any fixed m

= / log(u (2.16)

ZeX(m> = pim) (2.17)
=1

by checking that the hypotheses of Proposition 2.1 hold for {X ,t > 1}. Since (2.12) holds,
we need only check condltlon (2.1) and condition (2.4). Condition (2.4) holds trivially since for

I(n) > m, {Ezel f(X; ) j = 1,...,p} are independent random variables. To check condition
(2.1) note that

k
n m m
EZP(XT(M) >z, X" > y)
=2
kﬁ(ZP >x_X()>y—|—ZPX )>xX()>y))
J=m+1
n m m
k—ZP Vs ) —I—kP( x> aypxtm > y)
n m kn2 m m
%P(Xi,ﬁ > )4 S P > P > )
m—1 k
- (m) E(ym) (m)( (.
— (g0l 4 0(1)) + — () (@, o)™y, 500) + 0(1))

Therefore

lim —ZP m)>x X(m)>y)—>0

which completes the proof of (2.17).

The proof of (2.15) follows a converging together argument similar to the proof of Proposition
3.3 in Resnick and Stdricd (1995). The conclusion (2.16) follows from Proposition 2.4 of Resnick
and Stéaricd (1995) which shows that the convergence of the tail measure implies the consistency of
Hill’s estimator. O

For dealing with the ARCH process in Section 4, it is better to have a version of Proposition
2.1 adapted for use with sets rather than C(E) functions. This is given next.

Proposition 2.3 Suppose all the assumptions of Proposition 2.1 hold except that in place of con-
dition (2.4) we assume

lim |EH 1__Zf ni))— [I E 1——Zf ni))| =0 (2.18)
el zEI 7=1 i€l;



for any function f of the form f = 3} Brl|(z; 0] where B > 0, h = 1,...,s, and z} > 0,
h=1,...,8 Then the conclusions of Proposition 2.1 hold.

Proof. We will use the fact that v, = v in M (E) provided

(a(L1), - - -va(L,)) = (V(I1),...v(I,)), (n— ) (2.19)

in R?, for any s and any intervals I; = (z;,00],7=1,2,...,s (Kallenberg (1983)). Using multivari-
ate Laplace transforms we must show that for any positive 81, ..., 85 and f =375 Brl(z,,00]

Eexp (—% Z f(Xn,i)) — exp(~ (). (2.20)

Define blocks I;, I as in Proposition 2.1 and decompose

Eexp (—% z:l: f(Xn,z))) - eXP(_V(f))‘

S )

=I+IT+1IT+1V.

I is controlled as in Proposition 2.1. For I, denote @ := maxy, 3, = supg f(z) and we have

II<EZeXp(——Zf )_1_|_ Zf

el 1€l

k—Iy

Z fX
_zszfQ ZEf n.j)

_Zszfz nl +ZEQ ZP(Xn,1>$h7Xn,j>$g)-
7=2

h=1g=1

By condition (2.1) and (2.5) it follows that lim,,_.. II = 0. Condition (2.18) is equivalent to
lim,,—.o III = 0. By (2.5) and (2.2)

(- %%Eﬂxmn)p — exp(~v(f),

the conclusion (2.6) of the Proposition follows. The rest is the same as in Proposition 2.1.0



3 Examples.

We now consider three examples of heavy-tailed dependent, stationary processes which have m-
dependent approximations and in each case we apply Proposition 2.2 to demonstrate the consistency
of Hill’s estimator. The three classes of processes are

e infinite order moving averages of iid heavy tailed random variables,
e the bilinear processes driven by heavy tailed innovations and
e processes satisfying a simple stochastic difference equation with random coefficients.

The first two processes are constructed using a sequence {Z;, —o0 < t < oo} of iid random
variables which for simplicity we take to be positive. These random variables have regularly varying
tail probabilities; that is, for z > 0,

P(Zy >z]=:1-F(z)=: F(z) = 27 *L(z), a>0, (3.1)

where L is a slowly varying function at oco.

3.1 Infinite order moving averages.

Suppose, that the sequence {¢;,7 > 0} € R™ contains at least one positive number and satisfies

0< ejl® < o0 (3.2)
j=0
for some 0 < é < a A1l. Then (cf. Cline (1983))

o0
Z c;Z; <
J=0

and Py p )
Xl >x 0
li /=0 7 = a 3.3
Az > 1) Z ¢ (3.3)
c; >0

so that 72 ¢;Z; also has regularly varying tail probabilities.
Define the moving average of order infinity processes, denoted MA(o0), by

o0
X; =) ¢jZi_j, —o0<t< oo, (3.4)
=0

Causal ARMA processes can be represented in the form (3.4) (Brockwell and Davis (1991), Chapter
3). The consistency of the Hill estimator for MA(oo) processes was considered in detail in Resnick
and Staricd (1995). See also Resnick and Stdrica (1996b).



3.2 The simple bilinear model.
Let X; be the stationary bilinear model
Xi=cXi 1 Zy 1+ 7y, —o00<t< 0 (3.5)
where ¢ > 0 is a positive constant satisfying
PEZY? < 1. (3.6)

Using the bilinear recursion formula (3.5), X; can be written as an infinite series whose convergence
is guaranteed by (3.6) (see Davis and Resnick (1995))

X =Y xP (3.7)

7=0
where

i1
x\V=2z, x= (1‘[ Zt_,») Zr;, j>1.
=1

Corollaries 2.3 and 2.4 of Davis and Resnick (1995) show that

m iy (9) m ,
lim. P(E;j(oz?ftx; =) _ ;cmﬂ (Ezf/z)]_1 (3.8)
and )
T P(E;‘):(oz?ztx; z) _ ;cja/z (Ezloz/z)j—l _ #:;Z?/Z (3.9)
3.3 Solutions of stochastic difference equations.
Let {Y;, —00 < t < o0} be a process which satisfies the stochastic difference equation
Yi=AY, 1+ 2Z;, —o0o<t< oo, (3.10)

where {(A4,,Z,), —00 < n < oo} are iid R3-valued random pairs (cf. Vervaat (1979), Grincevicius
(1975)). For the case which we consider here, Z; will have regularly varying tail probabilities and
the tail of Z; is heavier than that of A;. We assume the pair (Ao, Zy) satisfies

EAS <1, EAl < (3.11)

for some 0 < a < 8 and as usual
P(Zy > z)=2""L(x), (3.12)

where L is a slowly varying function at infinity. By iterating (3.10) we find for ¢ > 1,

Y; = i ( f[ A,») Zi = iy;“) (3.13)

7=0 \i=t—j+1

10



(where []i_, 41 A; = 1). It is suggestive to also write
>0
Y, =Y CijZij, t>1

where C; = HE:t—j-H A; so that the process is a random coefficient MA(oo) process. Furthermore

(Resnick and Willekens, 1990, Theorem 2.1 and Grincevicius, 1975)

P(ET:O Y;(]) > x) m -
= EASY 3.14
P(ZO > $) ]z:;( 0) ( )
and
(E] OY ad o 1
P(Zo>x Z EAY) =1 Ea (3.15)

We now state the result which applies Proposmon 2.2 and yields weak consistency of Hill’s
estimator for these three processes.

Corollary 3.1 Suppose {Z;} are iid positive random variables satisfying (3.1). The Hill estimator
is consistent for a=! when applied either to the MA(co) process of Section 8.1 or the solution of
the random coefficient difference equation described in Section 3.3. For the simple bilinear process
described in Section 3.2, the Hill estimator is consistent for 2/a.

Proof. We apply Proposition 2.2. The key in each case is that each process can be approximated
by an m-dependent sequence.
To prove the assertion for the simple bilinear process, let & — oo, n/k — oo and define b,, such
that n
EP(Xl > bn) -1 (n — oo) (3.16)

For m > 1, let Xr(zf?) =3 chl»(j)/bn. Define X,,; := 3272, chl»(j)/bn. Since by (3.8) and (3.9)
we have for z > 0,

ZC]X ) by > z) — YL cdel? (EZO‘/Z)‘
= 332, ciel? (Ezloz/z)J—l

m—a/Z

bl

we may define the measures (™ of Proposition 2.2 by

, -1
S cdel? EZIO‘/2 B
V(m)(($7 OO]) - J ‘ ( a/z)j_1$ a2
o (527

—a/2

Note that (™) 5 v, where v((z,]) = = . Since

L .om m =
lim lim EPOXT(”)_ Xn1| > €)= lim lim kP( > c]X /b > €)

m—00 n—00 ? m— 00 N— 00
J=m+1

. —1
S s 2 (BZ72)
= lim

—O(/Z_O
m—o00 . af2 Jj-1 € o
s s (5277

11



the condition (2.14) of Proposition 2.2 is also verified which proves consistency.
The proofs of the results for the MA(oo) process and the solution of the stochastic difference
equation are very similar. O
We simulated the bilinear process to get a sample of size 5000 using Pareto distributed Z’s
satisfying
P(Zy>z]=2"" =>1.

In Figure 3.1 we show a Hill plot of {(%, Hk_rll), 1 < k <5000}. The graph hovers between 0.5 and
0.6. The correct answer is 0.5.
bilin

0.7

Hill estimate of alpha
0.6

0.5

0 1000 2000 3000 4000 5000
number of order statistics

Figure 3.1

4 Tail estimation for solutions of stochastic difference equations
and ARCH processes.

In this section we consider tail estimation for the process {Y;, —0o < ¢t < oo} which satisfies the
stochastic difference equation

}/t = AtY;g_l + Bt, -0 <t< o0, (41)

where {(A,,B,),—o0 < n < oo} are iid R3-valued random pairs. In contrast to Section 3, we
will now make different assumptions on the tail behavior of the pair (A4,,B,) which preclude
truncating the series solution of (4.1). Solutions to (4.1) include as a particular case the first order
autoregressive conditional heteroschedastic (ARCH) process introduced by Engle (1982). The first
order ARCH process is defined by

&= Xe(B+ ML)V, —oo <t < o0, (4.2)

where {X;} are iid N(0,1) random variables, 8 > 0, 0 < A\ < 1. Thus {£}} satisfies (4.1) with
Ay = AX}?, By = 8X}. (Higher order ARCH processes would satisfy higher order versions of (4.1)
but these are not considered here.)

12



It is known (Kesten (1973), Vervaat (1979), Goldie (1991)) that if there exists & > 0 with
EAS =1, EAJlogt Ag < 0, 0< EB§ < o0, (4.3)

if Bo/(1 — Ap) is non-degenerate and if the conditional distribution of log Ag given Ag # 0 is
nonlattice, then there exists a constant ¢ > 0 such that as x — oo,

P(Yy > z)~cz™, (4.4)

Furthermore, (cf. de Haan, Resnick, Rootzen, de Vries (1989), page 220) under the assumptions
(4.3) there exists a 7 such that 0 <y < a and 0 < ¢p < 1 such that

EA]=cy< 1. (4.5)
By iterating (4.1) we find for ¢ > 1,
o0 4 o0 .
"= II 4i|Bw;=3vY (4.6)
7=0 \i=t—j3+1 7=0

(where []i_, 1 A; = 1). If we iterate (4.1) t — s times for s < t we get

t—s—1 t
= Y vY4 ( I Ak) Y, =Y 4T, Y, (4.7)
=0 k=s+1
where
I = A Ay A (4.8)
and
V' = Bi+ A4tBi oy + AyAy 1 Br o+ F AiAy - AgaBoyy. (4.9)

Observe that Yf’t and Y, are independent random variables as are II’ | and Y.
We begin with a lemma designed to help us check conditions (2.1) and (2.4) for the solution of
the stochastic difference equation (4.1).

Lemma 4.1 Assume (4.3) holds and that € > 0 is given. Suppose 11 < i3 < ...< i and z; > 0
fori=1,...,s. Recall the definition of v and co from (4.5).
(a) We have that

|P(Y;, >21,..., Y, > 2.) = [[ P(Yi, > 1)l
=1

< z:: (1:[ P(Yy > 2;)P(Yy € (Ts—gy1 — €, 25—gr1 +€) [ PYo>uz;— e)) (4.10)

J=5—q+2

+3 P TTY, > ),

J=2

13



(b) There exists M = M(z1,z2,...,25) and K = K(z1,...,x5) such that, for n large enough,
IP(Y;, > (/)1 Vi, > (nfB)0,) = P(Y:, > (n/B)a1) ... P(Y;, > (n/})/%2,)

< Ke(s — V)M Yk/n)* + e VEY (k/n)/* il 4.11
0 0

J=2

(¢) There exists C < oo such that
k
P(Y; > (n/k)Y2, Y, > (n/k)y) < P(Yy > (n/k)Y2)P(Yy > (n/k)/*(y—€))+C =ci. (4.12)
n
Proof. The conclusion of (a) follows from an induction argument. To keep the notation simple

we prove (a) for s = 2 and then derive the result for s = 3. The basic ingredient of the proofis the
observation in (4.7). We have for s < ¢,z >0,y >0

P(Y,>a,Y,>y)=PY, >z, Y + ' | Y, > y)
<P(Y, > 2,V 4+ Y, >y, T, Y, <€)+ P(Y, > 2, T, Y, > e
<P(Y, > )PV > y—e)+ P(Y, > 2, TIL 1Y, > ¢) (4.13)
<PY,>2)PY, >y—e€)+ P(Y, >z, T,,Y, >¢) (4.14)
=P(Y, > 2)P(Y; > y) + P(Yo > 2)P(y — e < Yy < y) + P(TI°Y, > e).

This shows that
P(Y,>2,Y;>y)— P(Y,>z)P(Y; >y) < P(Yy > 2)P(Yy € (y — €,9]) + P(IT{°Y5 > e).
From (4.14) we also get
P(Y,>2,Y;>y) < P(Yo>2)P(Yo >y —e€)+ P(Yy >z, II°Y, > ). (4.15)

We will use (4.15) in the proof of (¢).
The other half of the inequality in (@) is derived as follows:
P(Y, > 2)P(Y; > y+€)<P(Y, > )PV, + L Y, > y+ 6, I8, V, <€)+ P(IIL Y, > )
<P(Y, > z,Y" > y)+ P(IL,Y; > ¢
<P, >z, >y)+ PI°Y > e). (4.16)

Hence

~P(Yo>2)P(y<Yo<y+e)— P(II{°Yy > ¢)
<PY,>2Y,>y)— P >z)P(Y;>y)
< P(Yy > 2)P(y — e <Yy < y)+ P(IIT°Y, > e).

14



The conclusion of (a) for s = 2 follows. Based on the case s = 2 we will now prove the inequality
for s =3. For s<t<wuwand z >0,y >0 and z > 0 we have

PY,>z,Y: >y Y, >z2) <PY,>z,Y;>y)PY[" >z—¢€) + P(II},,Y; > ¢)
<P(Y, >2)P(Y, > y)P(Y)" > 2z —€)
+P(Yy > 2)P(y — e < Yo < y)P(Y" > 2 — €) + P(TI%Y, > €)
+P(TI{ ™'Y, > €)
<P(Y, > z)P(Y: > y)P(Y, > 2)
+P(Yy > 2)P(Yy > y)P(Yo € (2 — ¢,2])
+P(Yy > z)P(y —e <Yy <y)P(Yy > z—¢)
+P(TT7°Yy > €) + P(TIY 'Y, > e).

For the other half of the inequality, use (4.16) and independence and we get

P(Y,>z)P(Y; > y)P(Yy > 2+ €) < P(Y, > 2)P(Y;, > y)P(Y)" > 2) + P(II},Y; > ¢€)
<P(Y; >a2,Y: > y)P(Y" > 2)
+P(Y, > 2)P(Y; € (y — 6, y)) P(Y " > 2)
+P(IT°Y, > €) + P(TIY 'Y, > ¢)
<P(Ys>z2,Ye >y, Y, > 2)
+P(Yy > z)P(Yp € (y — €,y])P(Yy > z — ¢)
+P(IT°Y, > €) + P(TIYTYY; > 6).

Therefore

—P(Yo >z )P(Yo>y)P(Yo€(z,24+¢€)—P(Yo>2)P(Yo € (y—€,y])P(Yo >z —¢€)
~P(IIi"*Yy > €) — P(IIY7'Y; > )

(Vs> 2, >y,Y,>2)— P(Ys >2)P(Y: > y)P(Y, > 2)

(Yo > 2)P(Yo > y)P(Yo € (z—€,2])+ P(Yo > 2)P(Yo € (y — €,y ) P(Yy > 2z — ¢€)
+P(TT%Y, > €) + P(TIY 'Y, > 6.

<P
<P

To prove (b), we note that since the inequality in (a) holds whenever z; > 0,7 =1,...,s and
€ > 0 (provided z; —¢ > 0,4 = 1,...,s), we may replace z; by (n/k)"/%z; and € by (n/k)l/o‘e to get
a valid inequality. The 1nequa11ty in (b) then results from the one in (a) by using ¢p = EA} < 1,
P[Yy > z] ~ cx™®, 2 — oo and Markov’s inequality. To see this, note that the upper bound
becomes

X_: (l:[ Pl o xj]P[L()l € (Tomqi1 = &:0sgqr1 + €] ] P[i1 > xj - e]) (4.17)

nyL n\= nyL
q=1 \y=1 (E)a (E)a Jj=s—q+2 (E)O‘
+ 3 P TNY, > (n/k) ).
7=2

15



Note that by Markov’s inequality

S Py T Y > (n/k)'V]
7=2

k 5 Gi—gi_ /
S(E)’Y/Ofe—“/;E <H1J J 1Y0)’7

k S
= (;)7/0‘6_7 Z e T EY,.
=2
Furthermore, for n sufficiently large and some constant K = K(z1,...,,)

ZP[Yo > (n/k)/*(a;— ) S M, j=1,...5
n n .
EP[YO € (E)l/o‘(m_qﬂ —€Ts_qy1 T €] <€, F=1,...,s

and therefore, the first summation in (4.17) is bounded by

s—1s—q s

k k
ST imer= [ —-M
g=1j=1 " j=s—q+2 "
s—1
k kE k
=) (=) IM e K — (=) M
n nn
q=1
- s—1 k s
=Ke(s—1)M°*"(—)
n

which verifies (4.11).
To prove (c), substitute in (4.15) s = 1 and replace €, z and y by (n/k)"/%, (n/k)"/*z and
(n/k)"/*y. The desired result is shown if we prove

n _ /0 E o
PY, > (E)l/ax,ﬂi Yo > (E)l/ €] < c;cg 1

The probability on the left is

o0 Y.
t—1 -1 0
/x PG > ™! [Pl € du)
<clmle™ /oo y“’P[L € du]
- z (n/k)/e

Y; v
=B —2— ) 1
cy € <(n/k)1/a [(n/i?l/a”]

-5 (5 (i)

by Karamata’s theorem. O
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Lemma 4.2 Assume (4.3) holds and let {Y;} be the solution of (4.1). Then condition (2.1) or

(2.8) holds for the array {Y;/(n/k)'/*}; that is
k
lim — " P(Y: > (n/k)/2,Y; > (n/k)/y) = 0

for any x > 0, y > 0. If in addition one chooses l,, such that l,/k — 0 and

= = o(l)
then condition (2.18) also holds; that is
P
Jim |EH 1- —Zf (Yi/(n/k)*)) - H (1- —Zf (Yi/(n/k)/*))| =
lEI 7=1 1€l

(4.18)

(4.19)

(4.20)

where p = [n/k], I;, j = 1,...,p are defined in (2.3) and the function f is of the form given in

Proposition 2.5.

Proof. To check condition (2.1) use (c) of Lemma 4.2:

k
7 2 P> (n/B)/72 Vi > (n/k)/ey)
k .
< "V Py > (n/)/2) (Y > (n/) (g - ) + O30 =0

as n — 00.
To prove condition (2.18) holds, note that

Hl——ZfY/n/kl/o‘ HEl——ZfY/n/kl/o‘))
J=1 1€l €]
2

(4.21)

ES YR vib v S | (NCIR | SN

u=2 1< <j2<...<Jjulpi1 €1 €}, w€lj,

Also due to the definition of f one has

u

HfY/n/k )'/)) HEf i/ (n/k)H)

Z Zﬁhl- B PYay /() > gy, Y /(0] R) > )

hi1=1 hy=1
P(Y;, [(n/k)Y® > ap,) ... P(Yi,/(n/ k) > ap,).
From (4.11) it follows that
|P(Yiy /() >y Y (0 R)Y > ) = TT PO /(0 B)Y > )

=1

< Ke(u—1)MY(k/n)" + e VEY (k/n)%(u — 1)ckr.

17
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If we denote @ := max{f,:h =1,...,s} then one can bound (4.21) by

)SEIED SENEED SED SRS STl CUR DLy 4 e By (S - 1)c)

u=2 1<n<j2<.<Julp i1 €I} i€}, w€lj,

< 2_:2 kiu (i) (k= 1n)"(sQ)" (€K (u— 1)M"(k/n)"* + €7 BY (k/n)(u - 1)cf)
< Ixezp: (ﬁ) (u— 1)(sQM)*(k/n)" + e TEYy (k/n)Y/*cy zp: (i) (u—1)

Mpk MENP! MENP
:KG(SQ p <1+&> _<1+5Q ) +1)
n n n

—|—e‘7EY07(k/n)7/°‘cé“(%2”/k‘1 —on/k 4 1)
— A+ B.

When n — oo, B goes to 0, due to (4.19) and A — €((sQM — 1)exp(sQM) + 1). Letting ¢ — 0
ends the proof for condition (4.20). O

Proposition 4.1 Assume (4.3) holds and let {Y;} be the solution of (3.10). Choose k(n) such that
n = o(k*?). (4.23)

Then the Hill estimator applied to the sequence Y; is consistent, i.e.

k
1 Y(,) p 1
— > log = —. (4.24)
k ; Yiks) @

Proof. Due to (4.23) it is possible to choose I,, such that n/k << I, << k*/n. This choice
makes sure that (2.2) and (4.19) hold. The conclusion then follows from Proposition 2.1. O
For the ARCH process {{;} given by (4.2), we have

P& >z]~ea™, = — o

where o satisfies

EAX}H* =1
with {X,;} being iid N(0,1) random variables. Equivalently, o satisfies

T(a + %) — /RN

Thus the Hill estimator applied to {£2,..., &2} is consistent for a™! and a consistent estimator for
A is obtained from solving
1 <
Tla+5)= V(2A)7°

for ;\, where & is the estimate of a given by the reciprocal of the Hill estimator.
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We simulated 7000 data from the ARCH(1) model using § = 1 and A = 0.5. In this case, the
true value of a for {£?} is a ~ 2.365. Figure 4.1 displays the Hill plots which indicate an estimate
of a in the neighborhood of 2.1 or 2.2. The AltHill plot in the display is {(8, H[;é] L, 0<0 <1} and

the AltsmooHill plot smooths the AltHill plot. See Resnick and Starica (1996a) for a discussion of
such plots.

Hill plot AltHill
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Figure 4.1. Hill plots of ARCH? when A = 0.5.

5 Hidden Markov models.

A heavy tailed hidden Markov model is proposed in Meier-Hellstern et al (1991) to model the times
between transmission of packets at a source. We show the Hill estimator is consistent when applied
to such models.

The model has the following ingredients. Let {.J,,n > 0} be an ergodic, m-state Markov

chain on the state space {1,2,...,m}. Suppose the transition probability matrix of this chain is
P ={pi;,1 <1i,7 <m} and that the stationary distribution is 7’ = (7q,..., 7, ). Now suppose for
i=1,...,m we are given holding time distributions {qr(f), n > 1} concentrating on {1,2,...} and

that fori =1,...,m, {Dg), n > 0} are iid with common distribution {qr(f)}. Define {V,,,n > 0} by

V,=Jo, if 0< j < D,
=, it D§™ < j < D{™ 4 D),
=7y, it D) + DI < j < D) 4 DM 4 plP),

Thus

>0
V=3 Tkl | .
= L o e, i)
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The next ingredient we need are distributions Fi,..., F,, on R4 and iid uniform random variables
with support [0, 1] which we call {U,,,n > 0}. Define for n > 0

X, = Fi (Uy) (5.1)

and assume {U,}, {J,.}, {Dﬁf), n > 0,1 <7< m} are all independent.

So changes of state follow the Markov chain {J,} and a transition from i to j occurs with
probability p;;. Having entered state 7, the system stays in state ¢ for & time units with probability
q,(;). While in state ¢, random variables which we think of as interarrivals are generated from
distribution F;.

Proposition 5.1 Suppose {J,} is a stationary, ergodic Markov chain and that

EDS) <oo, 1=1,...,m (5.2)
Suppose for a > 0
Fi(z)~2"“L(z), z— o0 (5.3)
and _
F,
lim 7](36):0, ji=2,...,m (5.4)
M ()

Define the quantile function

o
~—~
o~

1 n
i 2 TV
=1

If k — oo, n/k — oo then

where

v((z,00] = b=

and fork=1,....m
ED¥r,

Hk = .
EY™, DYr;

1

Furthermore, the Hill estimator applied to {X;} is consistent for a='.

Proof. The proof uses Laplace functionals. For f € C}'{(]E), we need to show
1 & n _
Wo(f) = Bexp{-1 3 FOG/H()} = 1) = exp{- /]Ef(x)z/(d:c)}.
7=1
Define forn > 0

IVT(L]):Z:L[VZZJP ]I 1,...,m,
=0

NE

,u(j)(n): =, J=1,...,m.

N
Il
=]
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Because {X,,} is conditionally independent given {V,,} (see (5.1)) we have

7=1

—F H (/ @)k, (b(%)dm))Nr(lj) .

T, (f)=E ( (exp{—— 3 A(X; /b(%))}WO, N vn))

We now study the behavior of Nr(lj) and we will prove that as n — oo

Nr(zn) P

=0

i, J=1,...,m
n

The semi-Markov process {V;} changes states at times {S,,} where

and as n — oo we have

Now we define the process inverse to {S,} as

M(t) = sup{n: S, <t}

so that, as t — oo,
M(t) 1

s BpWa,

The relevance of {S,,} and {M(¢)} is that

i M(n)+1
Niz ) < % :Z_); (Sq = Sq=1)1[1, 1=k
R DM
> q L[Jg—1=k]
i1 uF) (M (n)+1) D)
n 9=0 !
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(k) n
S M (A () 4 1) M(n) + 1
pk) (M(n)+ 1) M(n)+1 n
ED¥ 7,
Z;‘nﬂ Eng)ﬂ'j

—

A lower bound is obtained similarly and this proves (5.6).
Note that because of (5.4) we have for z > 0 that

Thus for 2 < 7 < m,

since [ f(z) R F;(b(%)dz) — 0if f € CE(E). For j = 1 we claim
L= e TOMuF b(2)dr) - v(F)
E k

and assuming this is true we get

() —flz n nNT(ll)/n
</ e_f(z)/kFl(b(ﬁ)d:U)Nn = (1 — Je—e I )/k)nFl(b(E)dx)) ( :
E k

— exp{—v(f)}.
To verify (5.7) observe that
L= R p(da) < [ f@) TR - ()

and

= () +o(V) - ¢ [ PR )d)
= v(f) + o(1) + 7O(1)

(5.7)



This proves (5.7).

Thus, the factors in ¥,,(f) in (5.5) not corresponding to state 1 converge to 1 while the factor

from state 1 converges to the correct limit. The desired result follows from dominated convergence
after taking expectations. O
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