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ABSTRACT 

3-isobutyl-2-hydroxypyrazine (IBHP) is thought to be a key intermediate in both the 

biosynthesis and degradation of the herbaceous smelling 3-isobutyl-2-methoxypyrazine (IBMP), 

but quantitative methods for IBHP analysis are not widely reported and its behavior over the 

growing season is not well understood. A recent hypothesis suggested that IBHP and IBMP 

concentrations over the growing season were correlated, leading to the ability to estimate pre-

veraison IBMP from harvest IBHP samples.  

An improved method for quantification of IBHP was developed, using a 2[H2]-IBHP 

standard, isolation by mixed-mode cation exchange SPE and silylation prior to GC-TOF-MS 

analysis. A limit of detection of 33 ng/L could be achieved for a 100 ml juice sample. This 

method was used to quantify IBHP during the 2010 growing season at sites in both the New 

York Finger Lakes and the California Central Valley regions. Free IBHP increased pre-veraison 

until a maximum at veraison, and both free and bound IBHP decreased until harvest. In New 

York Cabernet franc, the concentration of IBHP increased to over 280 pg/berry and in California 

Merlot IBHP peaked to over 470 pg/berry. Peak concentrations of free IBHP correlated with 

peak concentrations of IBMP, with Merlot accumulating both the most IBMP and free IBHP. 

The decline of IBHP occurred at least 2 weeks after typical IBMP synthesis and degradation, 

though different varietals and clones have differing degradation patterns. Acid-labile IBHP in 

Cabernet franc degraded following veraison levels nearing 950 pg/berry, to levels statistically 

indistinguishable from free IBHP near harvest. The ability of several yeast strains to methylate 

IBHP into IBMP was examined, and it was found that the yeast strains studied did not synthesize 

IBMP under the fermentation conditions.  
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CHAPTER 1 1	
  

BACKGROUND 2	
  

1.1 The Methoxypyrazines 3	
  

3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-3-methoxypyrazine (IPMP) and sec- 4	
  

butyl-2-methoxypyrazine (sBMP), are three significant flavor compounds known particularly for 5	
  

their herbaceous and vegetative aromas. The methoxypyrazines (MPs) were first characterized in 6	
  

green bell peppers in 1969 [1] and were soon found to be widespread in plants and the key 7	
  

odorant in several raw crops such as asparagus, lettuce, potatoes, green beans, peas, peanuts, 8	
  

coffee and wine grapes (Vitis vinifera) [1-12]. MPs are of particular note because of their 9	
  

extremely low sensory detection thresholds, down to below 10 pg/g in water or wine [4, 5, 7] 10	
  

(Table 1).  MP concentrations in some plants, particularly in vegetative tissue or unripe fruits, 11	
  

can exceed 1000 pg/g [10].  12	
  

Table 1. Organoleptic properties of some 3-alkyl-2-methyoxypyrazines (ND = Not Determined). 13	
  
14	
  

a: [13] 15	
  
b: [14] 16	
  
c: [4] 17	
  

d: [5] 18	
  
e: [7] 19	
  
f: [15] 20	
  

g: [11] 21	
  
h: [9] 22	
  
i: [16] 23	
  

24	
  

1.2 Occurrence of Pyrazines in Nature 25	
  

Pyrazines, alkylpyrazines and methoxypyrazines (Figure 1) are naturally occurring 26	
  

compounds found in plant and animal matter [10, 17, 18]. A biosynthetic pathway of pyrazines 27	
  

 Detection Threshold 
in Water (ng/L) 

Detection Threshold 
in Wine (ng/L) 

Aroma Attributes 

IBMP 2a 2 – 10b,c,d Bell peppere, 
herbaceousd, 
vegetalf 

IPMP 1-2e,g,h 0.32 -2c,i Bell peppere, raw 
potatoe, green peash, 
Earthyg 

sBMP 1 h ND Green peash, 
galbanum oilh 



	
   2	
  

in plants has since been suggested by Murray and Whitman, which involves the enzymatic 28	
  

condensation of an α-amino acid amide and 1,2-dicarbonyl [9]. Bacteria have also been shown to 29	
  

form pyrazines and alkylpyrazines from dicarbonyls and amino acids, and this process has been 30	
  

optimized for the commercial production of flavors for products such as nato or soy sauce [19- 31	
  

21]. Pyrazine and pyrazine derivatives are also known to be formed by Maillard reactions 32	
  

between an amino acid and sugars, particularly at high heat, during production of certain foods 33	
  

such as coffee beans that go through heat processing [17, 19, 22]. 34	
  

 35	
  

Figure 1. The structure of pyrazine and pyrazine derivatives. 36	
  

 37	
  

There is very little known about biodegradation of pyrazines, beyond the hydroxylation of 38	
  

the pyrazine ring [23]. The ability of bacterial strains such as Rhodoccocus erythropolis to use 39	
  

2,5-dimethylpyrazine as the sole source of both carbon and nitrogen suggests that there is some 40	
  

yet unidentified enzymatic reaction to degrade the pyrazine ring [18, 24].  41	
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Humans and other animals can oxidize pyrazines to either the corresponding alcohol or 42	
  

carboxylic acid by P450 type enzymes, or hydroxylating pyrazines by molybdenum-containing 43	
  

oxidases of the xanthin oxidase type [18, 23]. Pyrazines have also been found to have many 44	
  

bioactive effects, such as the pharmacological effects [18] or cellular effects such as changes in 45	
  

membrane fluidity [25], or the induction or inhibition of enzymes [26]. Even just the odor of 46	
  

pyrazines have been found to influence biological activity: leghorn chickens that were exposed 47	
  

to IBMP odors for 6 weeks were reported to lay larger eggs than the control group [27]. 48	
  

However, pyrazines on the whole have been found to be relatively non-toxic, with very high 49	
  

LD50 values in mice (at or over 2000 mg/kg) and have thus achieved GRAS (generally regarded 50	
  

as safe) status for use as flavoring agents in food [28]. 51	
  

 52	
  

1.3 Flavor Properties of Methoxypyrazines in Grapes and Wine  53	
  

Alkyl-methoxypyrazines specifically have been found to play a great role in flavor chemistry 54	
  

both in raw foods as well as foods dependent on microorganism activity [1, 4, 8-10, 21, 29]. At a 55	
  

moderate level, IBMP plays an important role in the characteristic aroma in several varietals [4, 56	
  

30]. However, the concentration of IBMP above detection threshold in wines quickly leads to 57	
  

unpleasant green and unripe aromas that are considered faulty [4, 30, 31]. The presence of IBMP 58	
  

is considered so key to the aroma composition of the varietal Sauvignon blanc, it has even been 59	
  

the subject of illegal addition to increase the concentration within finished wine from South 60	
  

Africa [32]. It has been determined that above 8-10 ng/L, IBMP has a significant correlation with 61	
  

a perceived vegetal aroma in both white and red Bordeaux Varietal wines, with an r2 value of 62	
  

0.551-0.74 [4, 5]. While this demonstrates a correlation between IBMP and herbaceousness, 63	
  

other green volatiles or masking effects are also likely important [4, 33-35].  64	
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1.4 Detection of Methoxypyrazines in Wine and Grapes 65	
  

The first successful measurements of MPs in grapes via gas chromatography was reported by 66	
  

Bayonove et al in 1975 in Sauvignon blanc grapes [2]. The presence and aroma of IBMP in 67	
  

Sauvignon blanc was confirmed through the use of sensory analysis by gas chromatography 68	
  

effluent sniffing [2, 3, 36, 37]. This allowed for a new direction of studying MPs within wine 69	
  

grapes and wine. 70	
  

Harris et al. in 1987 measured the IBMP concentration in Sauvignon blanc wine by GC/MS, 71	
  

which represented the first isolation and identification of MPs within wine [3]. Since then, the 72	
  

contribution of MPs to many of the other common herbaceous Vitis vinifera varietal aromas 73	
  

(such as those found in or with Cabernet sauvignon, Merlot, Cabernet franc and Carmenere) has 74	
  

been confirmed [4, 38-41]. Other MPs, such as 2-ethyl-3-methoxypyrazine and 3-methyl-2- 75	
  

methoxypyrazine, were originally thought to be important to wine aromas but were later 76	
  

dismissed as unimportant due to their high detection thresholds and low concentration within 77	
  

wine and wine grapes [3, 7, 37, 41]. IPMP and sBMP from grapes and wine were not typically 78	
  

found in levels high enough to be above detection threshold in most wines; thus IBMP was found 79	
  

to be the principle methoxypyrazine contributing to wine varietal aroma [4, 5, 30, 38, 41, 42].  80	
  

 81	
  

1.5 Quantification of Methoxypyrazines 82	
  

One of the major challenges to IBMP identification and quantification was due to the 83	
  

extremely low levels in grapes or wine. The introduction of using a labeled standard allowed the 84	
  

first accurate measurement of IBMP in wine [3]. The synthesis of deuterated standards offers 85	
  

several advantages for chemical and biochemical analysis, such as tracing transformations and 86	
  

behavior and the identification and quantification of compounds [43, 44]. Most trace volatile 87	
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analyses, including MP analyses, demand considerable sample pre-concentration and extraction, 88	
  

which risks inaccurate results due to samples losses.  These risks can be limited in MP analyses 89	
  

by use of an isotopically labeled standard [3, 45-48]. It is well known that in gas chromatography 90	
  

changes in isotopic compositions and the position of the deuterium also result in changes in in 91	
  

retention time, due to slight changes in either the vapor pressure of the solute or the solute- 92	
  

stationary phase interaction [49-51]. In most cases, the replacement of a carbon-bound hydrogen 93	
  

with a deuterium changes the polarity [49, 52] or decreases the interaction with stationary phase, 94	
  

and thus decreases the retention time in comparison to the undeuterated compound [53]. This 95	
  

effect has been termed the “inverse isotope effect”, or “chromatographic isotope effect” in gas 96	
  

chromatography-mass spectrometry (GC-MS) and is the most commonly reported behavior in 97	
  

gas or liquid [43, 50, 53]. The “normal isotope effect” then, is when the retention time of the 98	
  

deuterated compound increases in comparison to the undeuterated compound, i.e. when the 99	
  

lighter compounds elute first, is rarely seen outside of gas-solid chromatography at low 100	
  

temperatures [43, 50, 53]. A few studies have been done that show that changing the location of 101	
  

the deuterium on the compound can change the isotopic effect from normal to inverse, due to 102	
  

changes in vapor pressure or hydrophobicity among the isomers [50, 53-57].  In general, 103	
  

deuteration of methyl or methylene groups yields the inverse isotope effect [50, 54, 55].  104	
  

 105	
  

1.6 Attempts to Control Methoxypyrazine Levels 106	
  

With the determination of a correlation between IBMP and vegetal aromas in wine, focus 107	
  

shifted to the measurement and manipulation of IBMP within either the vineyard or the winery. 108	
  

As high IBMP concentrations can greatly affect the quality of a wine, the ability to remove or 109	
  

change IBMP concentrations was and is still of great interest.  110	
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There is a strong correlation between the level of IBMP concentrations in grapes at harvest 111	
  

and in the finished wine [31, 47], due to the relative inability of general cellar practices such as 112	
  

bentonite fining, pectinases and oak contact to affect IBMP concentration [58, 59] and the ease 113	
  

of extraction during the vinification process [36, 60]. In Sauvignon blanc grapes, IBMP was 114	
  

found in free run juice immediately after crushing, and was shown to have higher extraction in 115	
  

successive presses, with most of the IBMP extracted prior to alcoholic fermentation [36, 44]. 116	
  

IBMP also has the added challenge to winemakers of being chemically stable, as after three years 117	
  

of bottle aging there was no significant change in concentration [36]. Mitigating factors within 118	
  

the winery include thermovinification and settling of the wine, however these options are often 119	
  

not appropriate for particular styles of wine [36]. Activated charcoal has also been found to 120	
  

remove IBMP, but lacks selectivity and can remove desired compounds from the wine or juice 121	
  

[58]. 122	
  

Because of the challenge of selective removal of IBMP from juice or wine, research has also 123	
  

focused on factors that affect IBMP concentration in the vineyard. In wine grapes, it has been 124	
  

shown that IBMP levels increase preveraison, peaking two to three weeks before veraison then 125	
  

significantly decrease between veraison and harvest [36, 41, 60-63]. The maturity of grapes thus 126	
  

plays a strong role in the harvest concentration of IBMP, and so other factors such as growing 127	
  

degree days (GDD) will thus affect the final concentration [36, 41]. Several viticultural 128	
  

parameters have been examined for their effects on the concentration of IBMP.  Vigor, crop load, 129	
  

and water status have all been shown to affect the concentration of IBMP in grapes at harvest, as 130	
  

the increase of peak IBMP has been correlated with rapid vine growth during pre-veraison, thus 131	
  

any viticultural practices that lead to increased vigor (such as lower crop loads, excess 132	
  

fertilization or high water status) lead to an increase in IBMP concentration [36, 64-66]. High 133	
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cluster light exposure has also been shown to lower the peak IBMP concentration though the 134	
  

concentrations at harvest are similar [61]. This suggests that IBMP is not degraded by light 135	
  

exposure, as it would be expected that exposed clusters at harvest would have much lower 136	
  

concentrations than those that were not exposed [61, 66].  137	
  

 138	
  

1.7 Metabolism of Methoxypyrazines 139	
  

As the variability between viticultural practices and the final concentration of IBMP grapes 140	
  

at harvest has yet to be fully explained, the most recent focus has been on the precursors and 141	
  

degradation products within the grape berry for an increased understanding in how viticultural 142	
  

practices affect IBMP. Although the biosynthetic pathway of IBMP has not yet been fully 143	
  

determined, it is hypothesized to be the product of the condensation of the amino acid leucine, 144	
  

that has gone through amidation, and glyoxal into 3-isobutyl-2(1H)-pyrazin-2-one, which along 145	
  

with its tautomer 3-isobutyl-2-hydroxypyrazine (IBHP), can then be methylated [7, 10, 67] 146	
  

(Figure 2). This pathway has been shown to occur in laboratory synthesis as well [7, 22, 45]. 147	
  

IBHP and other 3-alkyl-2-hydroxypyrazines (3-isopropyl-2-hydroxypyrazine [IPHP], 3-sec- 148	
  

butyl-2-methyoxypyrazine [sBHP]) are of interest as they have essentially no odor; most likely 149	
  

due to their low volatility and high polarity (Figure 1) [7]. 150	
  

  151	
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  152	
  

Figure 2. From Ryona et al. 2011, the putative biosynthesis and degradation pathways of IBMP 153	
  
through O-methylation and O-demethylation reactions [67]. 154	
  

 155	
  

  156	
  

O-­‐demethylationO-­‐methylation

1

2 3+

4a 4b

5

1: Amino acid
2: Amide
3: Glyoxal
4a: 3-isobutyl-2(1H)-hydroxypyrazin-2-one 
4b: 3-isobutyl-2-hydroxypyrazine (IBHP)
5:   3-isobutyl-2-methoxypyrazine (IBMP)
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The final IBMP biosynthesis step within grapes is thought to be an O-methylation of IBHP 157	
  

via an O-methyltransferase [10, 22]. Hashizume et al were the first to measure IBHP 158	
  

concentrations within wine grapes, and determined that it is found at levels similar to IBMP (at 159	
  

the pg/g level) [68]. They identified and purified an S-adenosyl-L-methionine (SAM) dependent 160	
  

O-methyltransferase (OMT) that was capable of methylating IBHP into IBMP [68, 69]. This 161	
  

OMT was the most effective against other substrates such as caffeic acid, but the purified protein 162	
  

had activity against a broad range of substrates including IBHP [69]. Upon further study, the 163	
  

OMT activity and the level of IBHP were positively correlated with the level of IBMP within 164	
  

different grape varieties at 40 days after anthesis; of particular note was the trace amount OMT 165	
  

activity in Pinot noir and low IBMP concentration, despite having measureable amounts of IBHP 166	
  

[68]. This offered another confirmation that the OMT is responsible for the last step of IBMP 167	
  

synthesis, as the trace activity of OMT resulted in low IBMP even in the presence of IBHP [68].  168	
  

Dunlevy et al. in 2010 then identified the genes responsible for the production of two similar 169	
  

OMTs, Vitis vinifera o-methyltransferase 1 and 2 (VvOMT1, VvOMT2), and not only showed 170	
  

that recombinant VvOMT1 and VvOMT2 genes can methylate hydroxypyrazines but that the gene 171	
  

expression occurred during the same period as IBMP accumulation within the grapes [70]. They 172	
  

also found that these OMTs were capable of methylating a wide variety of substrates, which is in 173	
  

agreement with the previous findings by Hashizume [68, 70]. Interestingly, it was found that 174	
  

VvOMT1 and VvOMT2 had different activities regarding the methylation of IBHP and the 175	
  

similarly structured IPHP, and it was found that small changes in the active sites of VvOMT1 176	
  

and VvOMT2 accounted for the difference and thus VvOMT1 is the more important OMT in 177	
  

IBMP synthesis [70, 71] (Figure 3). 178	
  

  179	
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Figure 3. Proposed final step in the biosynthesis of IBMP and IPMP via VvOMTs in the 180	
  
presence of SAM, with a 3-alkyl-2-methoxypyrazine and S-adenosylhomocysteine as products, 181	
  
from Vallarino et al. 201l and based on work from Hashizume et al 2001 [68, 71]. 182	
  
 183	
  

 184	
  

The degradation pathway of IBMP is as of yet unconfirmed, though it is hypothesized that it 185	
  

is enzymatically demethylated back into IBHP [67]. A study by Hawksworth et al. lends 186	
  

credence to this theory, as rats that were fed IBMP degraded it into IBHP, suggesting an O- 187	
  

demethylation degradation pathway [23]. In the most recent study by Ryona et al, it was 188	
  

determined that IBHP and IBMP were inversely correlated over ripening for both bell peppers 189	
  

and wine grapes, suggesting that IBHP is the first step in the IBMP degradation pathway [67] 190	
  

(Figure 2). It was also observed that acid treatment of Cabernet franc increased measured IBHP 191	
  

suggesting that some portion of IBHP existed as a glycoside (“bound” IBHP) [67].  192	
  

 193	
  



	
   11	
  

1.8 Detection and Quantification of Hydroxypyrazines 194	
  

Because IBHP appears to be both the precursor and degradation product of IBMP in grapes, 195	
  

determining factors that affect IBHP in the vineyard may be useful to understanding empirical 196	
  

observations regarding IBMP.  However, IBHP has proven challenging to measure due to its 197	
  

relatively high polarity, low volatility, and low concentration, and the lack of suitable existing 198	
  

strategies for measuring IBHP has prevented much of its study within wine and wine grapes, [67, 199	
  

68]. Previous approaches for measuring IBHP required either large amounts of juice (up to 1 L) 200	
  

or liquid extractions with large quantities of solvents that then required long evaporations to be 201	
  

able to concentrate IBHP to levels detectable by GC-MS [67, 68]. The method described by 202	
  

Hashizume et al (2001) was only able to detect a lower limit of 100 pg/g; and while the method 203	
  

by Ryona et al had a limit of detection of 25 pg/g it required the use of GCxGC-TOF-MS due to 204	
  

interferences [67, 68]. 205	
  

Silylation is a common method for derivatizing molecules that contain a proton capable of 206	
  

hydrogen bonding (e.g. –OH, =NH, –NH2, –SH, –COOH), as the addition of the silyl groups 207	
  

result in decreased polarity and increased volatility allowing for better sensitivity and resolution 208	
  

for measurement via GC-MS [72]. Trimethyl silyl (TMS) derivatives have been found to be 209	
  

useful in the derivatization of hydroxyl groups (Figure 4), even those that are sterically hindered 210	
  

[23, 73, 74]. Sweeley et al determined that the combination of hydroxysilizane and 211	
  

trimethylchlorosilane derivatization compounds, along with pyridine, allowed for the complete 212	
  

conversion of sugars to o-tri-methyl silyl derivatives, allowing for measurement via gas 213	
  

chromatography [74].This was also shown to work for measurement of hydroxypyrazines by 214	
  

Hawksworth et al [23]. 215	
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Figure 4. TMS derivatization reaction, where for TMCS: X = Cl and HMDS: X = NH-Si-(CH3)3 
[72].  
 

1.9 Goals of Project 

Due to the importance of IBMP to wine flavor and acceptance, more research is necessary to 

understand its synthesis and degradation patterns. Very little previous work has been done in 

regards to understanding the concentration of the identified precursor, IBHP, in wine grapes and 

the correlation of IBHP to IBMP over the growing season. This is in part due to the challenge of 

measuring and quantifying the compound at such low concentrations. In this study, a method for 

isolation of IBHP via solvent phase extraction (SPE) and quantification via preparation of a 

stable deuterated standard, derivatization, and one dimensional gas chromatography time-of-

flight mass spectrometry (GC-TOF-MS) is presented, as well as data of IBHP and IBMP 

concentrations from throughout the 2010 and 2011 growing seasons. The fate of IBHP and 

IBMP during fermentation by different strains of wine yeast is also explored. This will help 

elucidate the role and relationship of IBHP in IBMP synthesis and degradation, both in the 

vineyard and in the winery, and could potentially lead to future understanding of how to control 

IBMP levels.  
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CHAPTER 2 

QUANTIFICATION OF 3-ISOBUTYL-2-HYDROXYPYRAZINE, A KEY INTERMEDIATE IN IBMP 

METABOLISM 

Abstract 

3-isobutyl-2-hydroxypyrazine (IBHP) is thought to be a key intermediate in both the 

biosynthesis and degradation of the herbaceous smelling 3-isobutyl-2-methoxypyrazine (IBMP), 

but quantitative methods for IBHP analysis are not widely reported and its behavior over the 

growing season is not well understood. An improved method for quantification of IBHP was 

developed, using a 2[H2]-IBHP standard, isolation by mixed-mode cation exchange SPE and 

silylation prior to GC-TOF-MS analysis. A limit of detection of 33 ng/L could be achieved for a 

100 ml juice sample. This method was used to quantify IBHP during the 2010 growing season at 

sites in both the New York Finger Lakes and the California Central Valley regions. In New York 

Cabernet franc, the concentration of free IBHP increased to over 280 pg/berry and in California 

Merlot IBHP peaked to over 470 pg/berry. Peak concentrations of free IBHP appeared to 

correlate with peak concentrations of IBMP. The IBHP degradation occurred at least 2 weeks 

after typical IBMP synthesis and degradation, though it appears as though different varietals and 

clones have differing degradation patterns. Acid-labile IBHP in Cabernet franc degraded 

following veraison levels nearing 950 pg/berry, to levels statistically indistinguishable from free 

IBHP near harvest. The ability of several yeast strains to methylate IBHP into IBMP was 

examined, and it was not found under normal fermentation conditions for the identified yeast to 

synthesize IBMP from IBHP.   
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Introduction 

The 3-alkyl-2-methoxypyrazines (MPs), including 3-isobutyl-2-methoxypyrazine (IBMP), 3-

isopropyl-3-methoxypyrazine (IPMP) and 3-sec-butyl-2-methoxypyrazine (sBMP) contribute 

herbaceous and vegetative aromas to many plant-derived foods. The MPs were first 

characterized in green bell peppers [1] and were subsequently found  in several other plants 

including asparagus, lettuce, potatoes, green beans, peas, and wine grapes (Vitis vinifera) [1-3]. 

MPs possess low sensory detection thresholds of <10 pg/L in water or wine [4-6], and their 

concentrations in vegetative tissue and unripe fruits can exceed 1000 pg/g [3].  

The MPs, and particularly IBMP, are known to play an important role in the flavor of some 

wines [5-10], including varietals such as Sauvignon blanc, Cabernet Sauvignon, and Cabernet 

franc [5, 6, 10-12]. While modest concentrations may contribute positively to varietal character, 

IBMP concentrations well above threshold may result in unacceptable green and unripe aromas 

[5, 10, 11]. The effects of several environmental factors on IBMP accumulation and degradation 

have been investigated, including cluster shading, water availability, and nitrogen fertilization 

[13-17]. However, interpretation of these empirical results is often challenging.  For example, 

several authors have observed that pre-veraison cluster shading in the vineyard results in 

increased accumulation of IBMP [13, 14, 16], but a biochemical explanation for this 

phenomenon is not available. 

Interpretation of these results should be facilitated by understanding the behavior of 

metabolic intermediates of MPs.  MP biosynthesis in plants has not yet been entirely determined.  

It is hypothesized to begin with the condensation of NH3, an appropriate amino acid (e.g. 

leucine, valine) and glyoxal to form a 3-alkyl-2(1H)-pyrazin-2-one and its tautomer 3-alkyl-2-

hydroxypyrazine (HP) [3, 4, 12].  Subsequently, HPs are thought to be O-methylated to form 
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MPs [3, 18]. An S-adenosyl-L-methionine (SAM) dependent O-methyltransferase (OMT) 

capable of methylating IBHP into IBMP has been identified and purified [19, 20]. More recently, 

two genes (VvOMT1, VvOMT2) have been cloned and shown to be capable of methylating HPs.  

Transcription analysis revealed that these genes are expressed pre-veraison, corresponding with 

the time of maximum IBMP accumulation within the grapes [21].   The degradation pathway of 

IBMP in plants is not as well studied.  A recent report has suggested that IBMP may be 

demethylated to reform IBHP and then partially glycosylated [12], similar to metabolism of 

IBMP observed in rats [22]. 

 Because IBHP appears to be both the precursor and degradation product of IBMP in grapes, 

characterizing the relationship of IBMP and IBHP during the growing season should assist in 

interpretation of empirical viticultural studies.  For example, it is not known if the elevated 

IBMP accumulation observed in shaded fruit results from increased production of IBHP, 

decreased expression of VvOMT1 and VvOMT2, or some other factors.  However, only a couple 

of reports on IBHP in grapes exist [12, 20], and both consider only a limited number of time 

points. In part, this may reflect analytical difficulties, since IBHP’s amphiphilic nature, low 

volatility, and low concentration make it a challenging analyte for GC-MS. 

In this study, we describe an improved method for IBHP quantification based on mixed mode 

solvent phase extraction (SPE) in the presence of a deuterated standard, silylation, and gas 

chromatography time-of-flight mass spectrometry (GC-TOF-MS) of the derivatized IBHP.  We 

then present data on the correlation of IBHP and IBMP concentrations in grapes over two 

growing seasons across multiple sites.  Lastly, the ability of IBHP and IBMP to interconvert 

during alcoholic fermentation was examined, as an study of the ability of other OMTs to 

methylate IBHP.   
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Materials and Methods 

Chemical Reagents and Standards 

3-Isobutyl-2-hydroxypyrazine (IBHP) was purchased from Manchester Organics Ltd. (97%, 

Sutton Weaver, U.K.). 2[H2]-3-isobutyl-2-hydroxypyrazine was synthesized as described below. 

2[H2]- 3-isobutyl-2-methoxypyrazine was synthesized as described elsewhere [23]. Sodium 

chloride (NaCl), potassium carbonate, sodium hydroxide (NaOH), D-glucose, pyridine (99%), 

hexamethyldisilyl (HMDS), manganese sulfate, 3-isobutyl- 2-methopyrazine (99%), molecular 

sieve UOP size 3A, glycol bis(sodium bisulfite), deuterium oxide (D2O, 99%) and L-leucinamide 

hydrochloride (99%) were purchased from Sigma Aldrich (Allentown, PA), 

ethylenediaminetetraacetic acid (EDTA), citric acid, ascorbic acid, sodium chloride (NaCl), 

ethanol, and trimethylsilyl chloride (TMCS) were purchased from Acros Organics N.V. (Geel, 

Belgium), ethyl acetate and acetonitrile were obtained from VWR International (West Chester, 

PA), and dichloromethane, ammonium hydroxide, calcium chloride, tartaric acid, hydrochloric 

acid (37%), methanol, dichloromethane, magnesium sulfate and D-fructose were purchased from 

Fisher Chemical (Fairlawn, NJ). YPD Agar and YPD Broth were purchased from B.D. Difco 

(Franklin Lakes, NJ). Deionized, distilled water was obtained from a Milli-Q purification system 

Millipore (Billerica, MA).  

 

2[H2]-3-Isobutyl-2-Hydroxypyrazine Synthesis  

2[H2]-3-Isobutyl-2-hydroxypyrazine synthesis was by adaptation of previous methods [24, 

25].  Glyoxal bis(sodium bisulfite) (2.65 g) was refluxed with 10 ml of D2O in a 50 ml round 

bottom flask at 100°C for 24 hours to yield a white crystalline solid in a yellow liquid, 2[H2]-
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glyoxal [24], which was used in the next step without further purification. In a separate round 

bottom-flask, leucinamide hydrochloride (0.166 g) was dissolved in 2 ml of methanol and cooled 

to -35°C. The 2[H2]-glyoxal slurry (0.174g) was added and stirred vigorously. Aqueous NaOH 

(12M, 200 µL) was added dropwise over the course of 20 minutes. The solution was warmed to 

room temperature, and stirred continuously for 2 hours. The mixture was cooled to 0°C, acidified 

with 200µL of 12 M HCl followed by addition of 0.2 g of sodium carbonate. The mixture was 

filtered and 2 mL of water was added to the filtrate. The methanol was removed by evaporation 

under reduced pressure, and the 2[H2]-3-isobutyl-2-hydroxypyrazine was extracted from the 

aqueous layer with 3x5ml aliquots of dichloromethane. Following silylation, the following GC-

MS spectra was observed [m/z (RI%)]: 153 (19), 169 (88), 184 (100), 211 (28), consistent with a 

2 a.m.u. shift as compared to the IBHP spectra presented in Hawksworth, et al [22].  

 

Fruit Samples for Time Course Studies of IBMP and IBHP  

Detailed studies on the concentration of IBHP and IBMP throughout the growing season 

were performed over 2010 in both the Finger Lakes region of New York State and the Central 

Valley region of California. Information on the sites and cultivars used in the time course study 

can be found in Table 2.  For sampling, 1 kg of grape clusters were randomly selected from 

throughout a block and frozen at -4 °C prior to analysis. Samples were taken at either weekly or 

biweekly intervals from fruit set until harvest.  
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Table 2. Time course cultivar data. 
Sample Location Cultivar/Clone Veraison Date Harvest Date 
CF4 Cornell University 

Experimental Vineyards,  
Cayuga Lake AVA,  
New York 

Cabernet franc 
Clone 4 

August 15 October 12 

CF1 Cornell University 
Experimental Vineyards,  
Cayuga Lake AVA,  
New York 

Cabernet franc 
Clone 1 

August 15 October 12 

ML Constellation Brands 
Vineyards,  
Central Valley AVA, 
California 

Merlot July 15 September 9 

 

Grape Juice Preparation  

Frozen grapes (400 g) were thawed, manually destemmed, and homogenized with a Waring 

Blender (model 5011, Torrington, CT) at low speed for 1 minute in the presence of 50 mg/kg 

ascorbic acid. The homogenate was pressed through cheesecloth and the juice collected.  

Because we had previously observed that IBHP is well extracted into the juice under these 

conditions [12], the insoluble solid material was discarded. An aliquot of juice was separated for 

measurements of pH, TA, and soluble solids. The filtered juice was loaded into either 250 or 500 

ml NALGENE polycarbonate centrifuge bottles (VWR International, West Chester, PA) and 

centrifuged at 9000 rpm for 30 min at 4°C (Sorvall RC6+ Centrifuge, Thermo Scientific, 

Waltham, MA). The supernatant was filtered through Whatman No. 4 filter paper and the 

resulting clarified juice was stored at -10°C until needed. Preparation of juice samples and 

subsequent preparation steps were performed in duplicate for each sample. 
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Basic Juice Chemistry Measurements 

Soluble solids were measured on extracted juice by digital refractometer (Leica Auto ABBE; 

AO Scientific Instruments, Buffalo, NY).  The titratable acidity (TA) and pH were measured 

with an automatic titrator (Titrino Plus 848 Doser, 869 Autosampler, Methrohm USA Riverview, 

FL and Accumet Excel XL25 pH meter, Thermo Fisher Scientific, Waltham, MA). The TA was 

measured via 5 ml aliquot against 0.1 N NaOH to a pH of 8.2. 

 

IBHP Extraction via Cation-Exchange SPE Method   

Solid phase extraction (SPE) of IBHP from grape juice was performed on a Varian 24-

cartridge positive pressure manifold (Palo Alto, CA), using 6 mL cartridges packed with 200 mg 

of Bond Elut Plexa PCX sorbent (Agilent, Santa Clara, CA). Juice samples (100 mL) were 

spiked with 2[H2]-IBHP to yield a final concentration of 500 ng/L and adjusted to pH = 2 with 

HCl.  Cartridges were conditioned with 5 mL dichloromethane, 10 mL methanol and 20 mL of 

water prior to sample loading. Each sample was split into two 50 mL sub-samples and extracted 

in parallel on two identically conditioned cartridges to expedite sample processing. Following 

sample loading, each cartridge was washed with 6 mL of 5% v/v methanol solution adjusted to 

pH = 2 with HCl and the cartridge dried with N2 (25 psi) for 30 minutes. IBHP was eluted with 3 

ml of 2% ammonium hydroxide in ethyl acetate/dichloromethane (4:1 v/v). Subsample extracts 

were recombined and evaporated to dryness under N2. 
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Derivatization of SPE Extracts:  

Silylation was adapted from the methods of Hawksworth et al [22] and Sweeley et al [26]. 

The dried extract was reconstituted in 0.5 mL of pyridine, dried over a molecular sieve, and 100 

µL of HMDS and 50 µL of TMCS were added. A small amount of gas, likely H2, was formed 

upon addition of the TMCS, and the reaction immediately became cloudy, likely due to the 

precipitation of a chloride salt [22]. The solution was heated for 20 min at 65°C, cooled, 

analyzed by GC-TOF-MS without further extraction of the reaction mixture. 

 

Quantification of Derivatized IBHP Extracts by GC-TOF-MS 

The derivatized IBHP was quantified by gas chromatography-time-of-flight mass 

spectrometry (Pegasus, LECO Corp., St. Joseph, MI). The GC system was a comprehensive 2-D 

GC (GCxGC), operated in one-dimensional mode by turning off the cryomodulator and setting 

the secondary oven temperature to +20 °C as compared to the primary oven. The GC column 

was a DB-FFAP (25 m x 0.25 mm x 0.25 µm, Agilent) coupled to a DB-17 (2 m x 0.1 mm x 0.2 

µm, Agilent) via an inert glass press-tight connector. Three µL were injected, splitless, into an 

injector operated in pulsed splitless mode and held at 250°C. Helium was used as a carrier gas at 

a flow rate of 1 mL/min.  The oven was initially at 70 °C and held for 5 min, then ramped at 6.3 

°C/min to 240 °C with a 8 min final hold. The MS transfer line temperature was 260 °C. The 

TOF-MS was operated in EI mode, with an ionization energy of -70 eV. Data processing was 

carried out by the LECO ChromaTOF software. The qualifier ions for IBHP were m/z 151, 167, 

209, and the quantifier ion was m/z 182.  The qualifier ions for 2[H2]-IBHP were m/z 153, 169, 

211 and the quantifier ion was m/z 184.  Quantification was performed with respect to 

appropriate calibration curves, described below. 
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Calibration Curve and Limits of Detection for IBHP 

Calibration curves for IBHP were prepared using model juice (10% w/v fructose, 10% w/v 

glucose, 7.5 % w/v tartaric acid, pH=3.5) at concentrations of 0, 100, 250, 500 and 1000 ng/L. 

The limit of detection (LOD) was defined as the minimum peak area necessary to achieve a 

signal-to-noise ration of 3:1 and was estimated from calibration curves using Pallesen’s method 

[27].  

 

Recovery Experiments  

To determine IBHP recovery by the SPE extraction protocol, 100 mL of model juice was 

spiked with 50 ng 2[H2]-IBHP and extracted by the SPE protocol described above.  Unspiked 

controls were also extracted by the same SPE protocol, and the SPE eluent spiked with 50 ng 

2[H2]-IBHP prior to derivatization.  Triplicates of both spiked juice and spiked reference samples 

were analyzed. Recovery was calculated as the ratio of the signal achieved when IBHP was 

spiked before SPE extraction divided by the signal achieved when IBHP was spiked after 

extraction. 

 

Analysis of Total IBHP by Acid Hydrolysis 

Time course samples from Clone 4 were evaluated for acid-releasable IBHP.  Juice samples 

were acidified to pH 2 by addition of HCl, and 2[H2]-IBHP was added to yield a final 

concentration of 500 ng/L. The acidified juice was incubated in a water bath (100˚C, 1 h). IBHP 

was then extracted from the hydrolyzed sample using the same protocol as described for free 

IBHP. 
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Quantification of IBMP 

IBMP in grapes and wine samples was quantified by GCxGC-TOF-MS using a method 

described elsewhere [28]. This previous method was also adapted for quantification of IBMP in 

resting cell experiments with the following modifications. For the experiments with 1 µg/L 

IBMP added, 1 ml of supernatant was diluted to 10 ml with MilliQ-H2O and 2[H2]-IBMP was 

added to a concentration of 100 ng/L.  For the resting cell experiment with no added IBMP, 1 ml 

of supernatant was diluted to 2 mL with MilliQ-H2O, and 20 ng/L of 2[H2]-IBMP was added 

along with 0.6 g of NaCl. The SPME incubation time was increased to 45 minutes to compensate 

for the reduced sample volume. Calibration curves were made from the tartrate buffer with either 

100 ng/L 2[H2]-IBMP or 20 ng/L 2[H2]-IBMP. 

 

Conversion of IBHP to IBMP in Small Scale Fermentations 

The fermentation protocol was adapted from Fia et al [29]. Commercial pasteurized, 

concentrated Pinot gris grape juice was purchased (Let’s Do Wine, letsdowine.com) and 

reconstituted as per manufacturer’s instructions to 20˚Brix, 6.5 g/L titratable acid pH=3.6. Four 

commercial S. cerevisiae strains, EC1118, Vin13, AMH and CY3079 (Lallemand Inc, Italy) and 

one non-S.cerevisiae strain, Kloeckera apiculata (isolated in the lab of R. Mira de Orduña), were 

inoculated into 150 ml of juice from YPD agar plates, and incubated at 25 ˚C for 48 hours and 72 

hours for the S. cerevisiae strains and K. apiculata respectively, and in turn used to inoculate 600 

ml of juice in a 1-L Corning Pyrex media storage bottles fitted with fermentation locks. IBHP 

was added to yield a concentration of 1 µg/L, and fermentations were carried out in triplicate. 

The flasks were incubated at 20˚C and shaken at 100 rpm on a gyratory shaker through 

fermentation. Fermentation kinetics were tracked by measured change in mass of the container. 
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Must samples (10 mL) were taken at 2-6 day intervals for analysis of IBMP. Samples were taken 

quickly via pipette to prevent excess oxygen introduction. Fermentation was considered 

complete either when fermented to dryness (<0.5% R.S.) or when there was no change in weight 

over 5 days.  

 

Conversion of IBHP to IBMP by Resting Cells 

Resting cell experiments were based on the method of Fia et al. [29]. EC1118 yeast cells 

grown on a YPD plate were inoculated into 100 mL of YPD media for 24 h at 25˚C, then 1 mL 

was inoculated into 600 mL YPD media for 48 h at 25˚C. Two hundred mL of this media were 

centrifuged at 3900 rpm for 3 min at 25 ˚C, and the supernatant was removed. Cells were washed 

with a tartrate buffer (7.5 g/L tartaric acid, 1.0 g/L MgSO4·7H2O and 0.25 g/L MnSO4·4H2O, 

adjusted to pH 3.5 with NaOH), and resuspended in 20 mL of the buffer. The cell suspension 

was pipetted into a glass vial and placed in a water bath at 20 ˚C. Each experiment was 

performed in duplicate. IBHP (1.µg/L) or IBHP and IBMP (both at 1 µg/L) were added to the 

suspensions. Samples (1.5 mL) were taken after 15, 30, 45, 60, and 120 min, and immediately 

frozen at -80˚C. Before IBHP or IBMP analysis, samples were thawed and centrifuged at 3500 

rpm.  

 

Statistical Analysis 

Statistical analysis was performed by JMP version 8 (SAS Institute, Cary, NC) using paired 

Student’s t test and least squares model fit. 
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Results and discussion 

Synthesis of 2[H2]-IBHP Internal Standard 

The 2[H2]-IBHP internal standard was performed by the sequence shown in Figure 5, adapted 

from earlier protocols by Bertz and by Gerritsma et. al [24, 25]. Figure 6A and 6B show the mass 

spectra of the qualifying ions for underivatized, while figures 7A and 7B show the spectra of the 

qualifying ions for derivatized  IBHP and 2[H2]-IBHP . The deuterated standard was stable in 

acetonitrile solution at 0°C for >12 months. The mass spectrum of the 2[H2]-IBHP standard is 

consistent with a 2 amu shift as compared to the unlabeled standard.  The latter spectrum is 

consistent with that of Hawksworth, et al [22]. 

 

Figure 5.  Synthesis and putative structure of 2[H2]-IBHP. 
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Figure 6. GC/CI-MS spectra displaying qualifying ions of a) 1 µg/L IBHP and b) 1 µg/L 
synthesized 2[H2]-IBHP 
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Figure 7. GC-TOF-MS mass spectra displaying qualifying ions of the derivatization products of 
a) 500 pg/L IBHP and b) 500 pg/L synthesized 2[H2]-IBHP. 
 
 

SPE and Derivatization Method – Optimization and Figures of Merit 

An optimized protocol for isolating the basic IBHP analyte by mixed-mode cation exchange 

was developed using Bond Elut Plexa PCX SPE columns.  A similar approach has been used for 

isolating MPs from wine and was used as a starting point [30].  In our work, the juice was 

initially acidified with HCl to pH = 2 prior to loading as opposed to the H3PO4 used in the 

previous report, as the latter resulted in a sizable silylated phosphoric acid interference following 

derivatization (data not shown).  The wash step used only 5% methanol: water (v/v), pH 2, as 

higher methanol content resulted in sensitivity losses without corresponding improvement in 
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interference removal.  Ethyl acetate was chosen as the eluent, with 20% DCM (v/v) made basic 

by the addition of 2% NH4 as it optimized the amount of IBHP removed from the column while 

minimizing the interferences eluted. The SPE step resulted in a recovery of 92.8 of IBHP (SE = 

3.18).  

Earlier studies of IBHP in grapes performed GC-MS analyses on underivatized IBHP [12, 

20], but this results in poor chromatographic behavior due to the presence of multiple H-bonding 

sites on IBHP and required much higher concentrations. We attempted to derivatize IBHP with 

multiple reagents, including trifluroacetic acid (TFAA), HMDS, and Sweeley’s reagent. TFAA 

and HMDS alone resulted in incomplete derivatization of IBHP.  Sweeley’s reagent, composed 

of HMDS and TMCS in pyridine, has been previously recommended for derivatization of IBHP 

[22].  Direct injection of the reaction mixture showed a single derivative and no evidence of the 

IBHP starting material. As a precaution, silylation IBHP is unstable at room temperature, and no 

silylated peak could be detected after storing derivatized samples for 12-24 h at 25°C. However, 

it was possible to re-derivatize samples without affecting accuracy if this degradation occurred. 

GC-TOF-MS chromatograms of the m/z 182 and 184 quantifying ions of silylated IBHP and 

its deuterated analogue run on a DB-FFAP column are shown in Figure 8.  Figure 8A, 8B and 8C 

show chromatograms of model juice spiked with 0, 500, and 1000 ng/L IBHP, respectively, 

following extraction and derivatization. Figure 8D shows a veraison sample of Cabernet franc, 

containing approximately 200 ng/L of native IBHP. All samples contain 500 ng/L 2[H2]-IBHP 

internal standard.  While the majority of samples were run on an FFAP column, we observed an 

interference for samples collected at the latest time point.  Therefore, samples from the last time 

points were run on an RTX-50 column (50% phenyl) to avoid these interferences.  Interestingly, 

the silylated derivatives exhibited a normal isotope effect on the FFAP column (Figure 8), in 
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which the heavier deuterated compound elutes after the undeuterated analog.  This was not the 

case for the 50% phenyl column, which exhibited the more common inverse isotope effect.  

 

 

Figure 8. GC-TOF-MS chromatograms displaying m/z 182 and 184 ions of derivatized a) model 
juice spiked with 0 ng/L IBHP and 500 ng/L 2[H2]-IBHP, b) 500 ng/L IBHP with 500 ng/L 
2[H2]-IBHP, c) 1000 ng/L IBHP and 500 ng/L 2[H2]-IBHP and d) Cabernet franc juice at 
veraison spiked with 500 ng/L 2[H2]-IBHP. 
 

Method Linearity and Limits of Detection  

Five point calibration curves were prepared in model juice at 0, 100, 250, 500, and 1000 ng/L 

oh IBHP.  Good linearity as the internal standard resulted in a linear calibration curve (R2 = 

0.995, %RMSE = 5.7).  The limit of detection for IBHP was estimated from Pallensen’s method 

as 35 ng/L in model juice, and was defined as the minimum peak area necessary for a signal-to-
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noise ratio of 3:1 [27]. The limits of detection in true juice samples were lower and estimated to 

be 20 ng/L, as at concentrations of 22 ng/L we saw %RSD of 9, and at 32 ng/L we saw %RSD of 

16, which is within acceptable limits. 

In summary, the use of mixed mode cation exchange SPE followed by silylation and one 

dimensional GC-TOF-MS for quantification can achieve LOD of 20 ng/L for 100 mL sample 

sizes. This is a considerable improvement over the earlier method described by our group which 

required 1000 mL sample sizes and GCxGC-TOF-MS for quantification to achieve a similar 

LOD [12].   

 

Time Course Studies of IBHP and IBMP 

IBHP in berries was measured during the 2010 growing season in both California Merlot and 

New York Cabernet franc.  For the Cabernet franc, two different clones were studied. Time 

course profiles for pg IBHP/berry vs. time are shown in Figure 9, and all three trials showed 

similar profiles. In all trials, IBHP was detectable at the earliest sampling point (4 weeks pre-

veraison, or approximately 3 weeks post-bloom), increased to a maximum on a per-berry basis at 

1-2 weeks post-veraison, and then decreased during ripening.  For example, CF4 (Figure 5a) had 

12 pg IBHP/berry (21 pg/g) at 30 days pre-veraison, which increased to 229 pg/berry (254 pg/g) 

by 3 days pre-veraison.  IBHP did not change significantly until 36 days post-veraison where it 

decreased to116 pg/berry (77 pg/g). Similar patterns were observed for the other trials.  

Interestingly, IBHP in the California Merlot (Figure 5c) reached a higher maximum value, 

peaking at 477 pg/berry (835 pg/g) at 8 days post-veraison, or nearly double the maximum IBHP 

observed on both a per-berry and concentration basis in the New York Cabernet franc samples.   

However, the late season decrease in IBHP in the California Merlot samples occurred more 
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rapidly than in the New York Cabernet franc, with a 75% decrease observed between 8 days and 

22 days post-veraison.   Due to the limited number of trials included in this study, it is not clear 

why IBHP degradation was more rapid in the California Merlot. 

Although this is the first report to perform a detailed time course study on IBHP, previous 

reports have measured IBHP in Cabernet franc with only 11 days pre-veraison , 28 days post-

veraison and harvest (59 days post-veraison) time points [12].  The previous observed IBHP 

concentrations were much lower for similar pre- and post-veraison time points than were 

determined in this study, although measurements taken at harvest were much higher. Whether 

this is due to measurement differences or clone or seasonal differences it is hard to tell due to the 

lack of available data points.  
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Figure 9. IBMP and free IBHP concentrations during ripening over the 2010 growing season for 
(a) CF4 (NY), (b) CF1 (NY) and (c) Merlot (CA). The error bars show the standard deviation of 
the duplicates. (*) Indicates no replicates were done. 
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The concentrations of IBHP for CF1 and Merlot peaked at least 2 weeks after IBMP reached 

a maximum (Figure 9). Similar to previous reports [6, 13], IBMP increased early in the season 

until 0-2 weeks pre-veraison, after which IBMP then slowly decrease until harvest. The IBMP 

concentrations of CF4 were very different than expected, with a peak IBMP concentration 

occurring 7 days after veraison. This could potentially be due to natural variation within the 

berries, as without this point the time course follows the general IBMP trend. CF4 and CF1 

IBMP peaked at a level of 269 pg/berry (198 pg/g) and 289 pg/berry (340 pg/g), at 7 and 0 days 

post-veraison, respectively. IBMP concentrations had declined to 49 pg/berry (33 pg/g) and 49 

pg/berry (25 pg/g) by 35 and 64 days post veraison, respectively. Merlot peaked at 357 pg/berry 

(631 pg/g) 7 days pre-veraison then decreased to a concentration of 24 pg/berry (20 pg/g) at 56 

days post veraison. Merlot had the highest IBMP concentration as well as the highest peak of 

free IBHP, while CF4 had both the lowest peak IBHP and peak IBMP concentrations, though 

similar to CF1.  This could suggest a trend between peak free IBHP and peak free IBMP, though 

this cannot be confirmed without more data.  

The observation that IBHP continues to increase for 1-2 weeks after veraison while IBMP 

begins to decline during the same time period is of note.  Dunlevy, et al observed a decrease in 

VvOMT1 expression between 8 and 10 weeks post-flowering, correlating with a decrease in 

IBMP during the same time [21]. Thus, although IBHP concentrations are still increasing, IBHP 

is no longer methylated to IBMP by VvOMT1 after 1-2 weeks pre-veraison.   

Previous reports had observed similar concentrations of IBHP in both IBMP accumulating 

(Cabernet franc) and non-accumulating (Riesling, Pinot noir) cultivars [12].  This suggests that 

differences in IBMP among cultivars may be explained by differences in VvOMT1 activity, a 

statement supported by computational studies on VvOMT1 from Pinot noir and Cabernet 
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Sauvignon.  In our current work, we observed the highest concentration of IBHP in grapes from 

the trial with the highest IBMP accumulation – California Merlot. This suggests that differences 

in IBMP accumulation may also be governed at least in part by differences in IBHP 

accumulation. However, VvOMT1 activity was not measured in our current study, so it is not 

possible to confirm this. 

 

IBHP in Grapes Following Acid Hydrolysis 

We had previously observed an increase of IBHP in juice samples following acidification 

and heating of samples [12], potentially because a fraction of IBHP exists in a ‘bound’ 

glycosylated form as has been observe in rat urine following IBMP ingestion.  Assuming this 

glycosylated IBHP pool is stable, we had reasoned that this bound IBHP pool could be used as a 

proxy for maximum IBMP concentrations [12].  

 

Table 3. Total, free and bound IBHP (pg/berry) in CF4. Different letters indicate a 
statistically significant difference at p <0.05.  
Days Post-
Veraison 

Total IBHP  Free IBHP  Bound IBHP  
[Total IBHP – Free IBHP] 

-3 1179a 229b 950a  
0 1220ab 206b  1013ab  
9 741a 165b  576ab 
14 558ab 168b  391ab 

 

Table 4. Total, free and bound IBHP (pg/berry) in CF1. Different letters indicate a 
statistically significant difference at p <0.05.  
Days Post-
Veraison 

Total IBHP  Free IBHP  Bound IBHP  
[Total IBHP – Free IBHP] 

57 210a 186a 24a  
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To test this hypothesis, acid hydrolysis was performed on CF4 and CF1 samples prior to 

IBHP measurement (Table 3 and Table 4).  Total IBHP content (acid-releasable and free) was 

considerably higher than free IBHP in CF4, and reached a maximum of 1179 pg/berry (1304 

pg/g) at 3 days pre-veraison. Total IBHP in CF4 decreased more rapidly than free IBHP after 

veraison to a level of 741 pg/berry (574 pg/g) by 9 days post veraison. The total IBHP sample 

from CF1 showed only 210 pg/berry (92 pg/g) and 186 pg/berry (82 pg/g) free IBHP by 57 days 

post-veraison. As the total IBHP at this point was not significantly different from the free IBHP, 

this equates to a concentration of bound IBHP not distinguishable from zero. This suggests that 

the concentration of bound IBHP decreases to below the limit of detection after veraison. It is of 

note that when IBHP was measured in bell peppers, there was no bound form of IBHP [12]; 

however as the bound form IBHP was only measured in ripe bell pepper it could be possible for 

no bound IBHP to remain by ripeness, if the same degradation pattern exists.  

This highlights the question of the synthesis and degradation pathway of IBMP and IBHP. 

The pathway of IBHP could potentially be explained due to the structural similarity to the 

aglycone flavanol, quercetin. Both IBHP and quercetin have 3’ hydroxyl active groups on a 

planar, heterocyclic 6 member carbon ring (Figure 10). Quercetin is a natural occurring phenol 

that is thought to act as an antioxidant and UV-protectant in grapes [38]. The enzymes VvOMT1 

and VvOMT2 both have higher than 100x more activity against quercetin than they do against 

IBHP [21] and it appears to be this promiscuity in the OMTs that allow for the side activity that 

causes synthesis of IBMP. IBMP demethylation is proposed to be through a 3-o-demethylase 

[12, 22] and though there are several potential enzymatic families that are capable of 

demethylation, such as cytochrome P450s, FAD dependent oxidases and dioxygenases, an 

enzyme capable of 3-o-demethylation of a planar heterocylic ring in plants has yet to be 
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characterized [31]. It seems as though there are different degradation patterns of IBHP, which 

could plateau, decrease rapidly, or decrease slowly. This suggests that the mechanisms that 

govern IBHP concentrations are separate from those that control IBMP metabolism and that 

IBMP is a side activity from the IBHP pathway. 

Figure 10.  The similar structures of a) Quercetin and b) IBHP. 

 

The acid labile IBHP, or bound IBHP, was hypothesized to be the glycosylated form of IBHP 

[12]. It is possible that due to the similarity of quercetin and IBHP as a substrate that the same 

enzyme that glycosylases quercetin to quercetin-3-glucose could glycosylate IBHP into IBHP-3-

glucose. Glycosylation is a common reaction catalyzed by several glycosyltransferase enzymes 

in plants shown to create stable, non-toxic products [32]. UFGT (UDP glucose-flavonoid 3-o-

glycosyl transferase) coincides with the accumulation of anthrocyanins in the exocarp of the 

berry at veraison, and so could also explain the presence of bound IBHP at veraison [33]. UGTs 

(UDP glycosyl transferases) are quite region selective as seen with quercetin as it has to block 

several other active sites while glycosylating one specific site [34, 35]. However, UGTs are 

promiscuous against several types of small lipophilic molecules with common features 

(including hormones, endogenous metabolites and xenobiotics) [36] which lends credence to the 

hypothesis that IBHP and quercetin are glycosylated by a similar or the same enzyme. One 
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argument against the glycosylation of IBHP is due to the degradation or transformation of the 

bound form of IBHP – as glycosylated compounds are incredibly stable throughout the growth of 

plants, it seems unlikely that the glucosyl bond is broken; however, the transformation could be 

explained with a change in the IBHP ring or side group.  

 

Evaluating Ability of Yeast to Methylate IBHP to IBMP - Winemaking and Resting Cell 

Experiments 

Several O-methyltransferases have been identified for Saccharomyces cerevisiae [37], 

although it is not known if these OMTs can methylate IBHP to IBMP as has been demonstrated 

for VvOMT.  Since free IBHP concentrations were nearly 100 pg/g at harvest at one site in this 

study, and over 200 pg/g in a previous study, even modest activity towards IBHP by yeast during 

fermentation could result in a meaningful change to IBMP in the finished wine.   
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Figure 11. Fermentation profile of five yeast strains in pasteurized Pinot gris grape juice at 25˚C 
in the presence of 1 µg/g IBHP. 

To determine wine yeasts exhibited could transform IBHP to IBMP, small scale 

fermentations on spiked juices were carried out with 4 commercial S. cerevisiae wine yeast 

strains, AMH, CY3079, EC1118 and VIN13, and one non-Saccharomyces strain (K. apiculata) 

were carried out in triplicate. Pinot gris grape juice was chosen as the fermentation medium 

because no detectable IBMP was present in the juice (<2 ng/L). 1 µg/L IBHP was added at the 

time of inoculation. Fermentation kinetics of the system were monitored by observing changes in 

the mass of the fermentation containers and loss of CO2 (Figure 11). All four Saccharomyces 

strains followed a similar fermentation pattern, and were finished fermenting by 10 days post 

inoculation. CY3079 did not ferment to dryness even though no further fermentation activity was 

taking place. K. apiculata had a much longer lag phase than the other strains, and did not rapidly 
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ferment until 4 days post inoculation, but then proceeded to ferment the juice to dryness by 15 

days post inoculation. No significant difference in kinetics was observed in the samples with 

added IBHP. Throughout fermentation, IBMP measurements were taken at 2-4 days intervals. 

The LOD for IBMP in wine using the 1-D GC-TOF-MS method was ca. 5 pg/mL, and no IBMP 

was detected at any time during fermentation.  Thus, if IBMP was being formed by methylation 

during fermentation, it was less than 0.5% of the available IBHP pool.  

A resting cell experiment using the commercial yeast strain EC1118 (S. cerevisiae) was also 

used to evaluate the ability of wine yeast to methylate IBHP. Two trials were conducted in 

duplicate: the first was done using 1 µg/g IBHP as a substrate to determine if the yeast exhibited 

OMT activity leading to the production of IBMP, and the second was performed using 1 µg/g 

IBHP and 1 µg/g IBMP to determine if IBMP exhibited a positive control on any OMT gene 

expression. Over the course of 2 h, no detectable change in IBMP concentration was observed in 

either trial. As further confirmation, we did not detect any characteristic IBMP aroma in the 1 

µg/g IBHP trial. 

 

Conclusions 

In conclusion, we have monitored both free and acid-releasable IBHP in grapes during the 

growing season using an improved methodology capable of 20 ng/L detection limits with a 100 

mL sample size.  Free IBHP concentrations peak at least 2 weeks after the maximum IBMP 

concentration is reached and then decline during ripening. Total IBHP is nearly 6-fold higher 

than free IBHP at veraison, but decreases post-veraison, indicating that it cannot be used as a 

proxy for maximum IBMP.  Because the highest free IBHP concentrations were observed in 

grapes with the highest IBMP concentrations, it is possible that maximum IBMP accumulation is 
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influenced by IBHP accumulation. Future studies to determine if IBHP accumulation is more 

important than differences in VvOMT activity in explaining differences in IBMP accumulation 

seem justified, especially since harvest IBMP is often well correlated with maximum pre-

veraison IBMP. Finally, wine yeasts do not appear to possess the ability to methylate IBHP to 

IBMP during fermentation. Thus, IBHP in harvested grapes does not present a potential source 

of IBMP in wines. This conclusion is supported by the strong correlation between IBMP 

concentrations in grapes at harvest and in the resulting wines [28]. 
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