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Abstract

If all NP complete Sets are isomorphic under deterministic
polynomial time mappings (p-isomorphic) then P # NP and if all
PTAPE complete sets are p-isomorphic then P #¥ PTAPE. We show that
all NP complete sets known (in the literature) are indeed p-isomorphic
and so are the known PTAPE complete sets. Thus showing that, '
inspite of the radically different origins and attempted simplification
of these sets, all the known NP complete sets are identical but
for polynomially time bounded permutations.

Furthermore, if all NP complete sets are p-isomorphic then
they all must have similar densities and, for example, no language
over a single letter alphabet can be NP c anplete, nor can any sparse
language over an arbitrary alphabet be NP complete. We show that
complete sets in EXPTIME and EXPTAPE cannot be sparse and therefore
they canﬁot be over a single letter alphabet. Similarly, we show

that the hardest context-sensitive languages connot be sparse. We

* This research has been supported in part by National Science
Foundation Research Grants GJ-33171X and DCR 75-09433.



also relate the existance of sparse complete sets to the existance
of simple combinatorial circuits for the corresponding truncated

recognition problem of these languages.



I. Introduction

During the past years the importance of the P = NP? problem has
been fully realized and today it is one of the most important
problems in theoretical computer science [C,AHU,K,HS,SI]. The
importance of the P = NP? problem derives from the fact that NP, the
family of languages accepted by nondeterministic Turing machines in

_polynomial time, contains complete problems to which all other
problems in NP can be easily reduced and from the fact that very many
problems of practical interest in computing afe in NP and many of
them are NP complete ([AHU,C,K,GJS,SA,U]. Thus the search for fas;t
algorithms for a bewildering variety of problems can be reduced to
the search for a fast algorithm of a single problem. As a matter of
fact, during the last years considerable effort has been expanded in
discovering new NP complete problems and it is quite impressive how
many diverse problems from many.different problem areas have turned
out to be NP complete [AHU,C,K,SA,U]. Furthermore, among the known
NP complete problems some have been simplified and found still to be
NP complete [GJS].

In this paper we show that regardless of their origins and
attempted simplifications, ;11 the "known" NP complete sets are
essentially the same set. More specifically, we prove that all the
known NP complete sets are isomorphic under a deterministic
polynomial time mappings. Thus these NP complete sets, except for
a deterministic polynomial time recoding, are identical. The proof

of this result follows from two technical lemmas which give necessary



and sufficient conditions that a set is isomorphic under polynomial
time mappings to a given NP complete set, say the set of all
satisfiable Boolean functions in conjunctive normal form. To
establish polynomial time isomorphisms (p-isomorphism) between NP
complete sets we just have to check that these sets satisfy the v
sufficient conditions of our lemmas, which turn out to be easy to
verify for all the NP complete sets found in the literature. We
exhibit the proof of the existence of p-isomorphism for the best known
NP complete problems and they can be easily supplied for the other
NP complete problems which have been described up to date in the
1ite§ature. Since so far no NP complete problems havé been found
which are not p-isomorphic and since all attempts to construct such
sets have failed, we are forced to conjecture that all NP complete
sets are isomorphic under deterministic polynomial time mappings.

It should be observed that a proof of this conjecture implies
that P # NP. To see this, we just have to note that P = NP iff
every non-empty finite set is NP complete. Since finite sets cannot
be isomorphic to infinite sets, the isomorphism of all NP complete
sets implies that P # NP. As a matter of fact, P # NP iff all NP
complete sets are isomorphic under recursive mappings.

It still could happen that P # NP but that there exist NP
complete sets which are not p-isomorphic. We conjecture that this
is not the case.

By the same methods we also show. that all the known PTAPE
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complete sets are isomorphic under deterministic polynomial time
mappings. Furthermore, if all PTAPE complete sets are p-isomorphic
then P # PTAPE, since P = PTAPE iff every nonempty finite set is
PTAPE complete.

Next we look at the density of NP and PTAPE complete sets. We
say that a set A, A CI*, is p-sparse iff the number of elements in
A up to length n is bounded by a polynomial in n. It is easily seen
that the known NP and PTAPE complete sets are not p-sparse and that
they cannot be p-isomorphic to p-sparse sets. We suspect that
neither NP nor PTAPE complete sets can be p-sparse. Note that a
proof that p-sparse sets cannot be NP nor PTAPE complete would prove
" that

P # NP # PTAPE.

On the other hand, we show that p-sparse sets cannot be complete
in EXPTIME and EXPTAPE, as first observed by A. Meyer [M]. 6ur proof
“actually shows that in EXPTIME there exist sets which are not p-sparse
and whose reduction to another set must be one-one almost everywhere,

thus, no p-sparse set can be EXPTIME complete. The corresponding
result also holds for EXPTAPE and more complex time and tape bounded
families of languages. It is still an open problem whether the
EXPTIME and EXPTAPE complete sets are all p-isomorphic, respectively.

It should be observed that the existence of p-sparse complete

sets for NP or PTAPE would imply the existence of combinatorial



circuits of polynomial complexity for the solution of the
corresponding truncated recognition problems. Equivalently, the
existence of p-sparse complete sets for NP (or PTAPE) implies that
we could prepare a tape (table) grow@ng only polynomially in n

sucp that all NP (or PTAPE) problems could be solved in deterministic
polynomial time using a fixed tape (for table-look up). Thus the
existence of sparse NP complete sets would permit, for all practical
purposes, the recognition of NP sets in deterministic polynomial
time (using a precomputed, polynomially long tape segment). This
seems to be quite unlikely, and the above mentioned results show
that this is not the case for EXPTIME and EXPTAPE: there does not
exist any sparse set to which complete problems in EXPTIME and
EXPTAPE can be reduced in polynomial time.

Finally, we turn to-context-sensitive languages. We say
(following R. Book) that a context-sensitive language L is hardest
if every other context-sensitive language can be reduced to L by a
linear-time mapping. It is well known that hardest context-sensitive
languages exist [HH] and that hardest context-free languages also
exist [GR]. Clearly, ihe context-sensitive languages are contained
in P or NP iff a hardest csl is in P or NP, respectively. Similarly,
the deterministic context-sensitive languages are equal to the non-
deterministic context-sensitive languages iff a hardest csl is a
d?terministic csl. We prove that no p-sparse language can be a
hardest csl and show that all known hardest csl's are p-isomorphic.
These results easily generalize to hardest lanquages of other

families of tape bounded languages.



II. Preliminaries

In this section, we make precise some of the objects which we
will treat. Our terminology is reasonably standard and so, this,
section may be skipped by those familiar with the terminology of

complgxity theory.

Definitions:

A transducer is a deterministic three tape Turing machine with
one two-way read-only input tape, one two-way read-write work tape,
and one one-way write-only output tape.

Our acceptor will be a k-tape Turing machine. The input will
be written on one of the tapes and all tapes are two-way read-write.
Acceptance will be.indicated by entering a final state and halting.

If the machine has just one tape we call it a single tape Turing

machine, otherwise, it is called a multi-tape Turing machine. If

the next move function associated with the Turing machine is single-
valued, we call it deterministic, otherwise, it is called non-
deterministic. We note that a deterministic TM may be considered to
be non-deterministic in a trivial fashion.

The amount of time used by a TM on input x is the number of

steps in the shortest accepting computation if x is accepted; the
number of steps in the longest computation if x is not accepted (if
some computation does not halt it is undefined).

The amount of tape used by a TM is the smallest amount of tape

used by an accepting computation if x is accepted, or the largest
amount used by any computation if x is not accepted (again, if some

computation uses unbounded tape, it is undefined.)



A TM, M, runs in time (tape) t(n) for some function t(n) if

for all n > 0 for every x of length n M uses less than t(n) time
(tape) on input x.
(N)DTIME(t(n)] = {A | A is accepted by a (non-)deterministic

TM which runs in time t(n)}.

(N)DTAPE([t (n)] {A | A is accepted by a (non-)deterministic T™

. which runs on tape t(n)}.

p = U prmme )
i>0

§p = Y NDTIME (nt)
i>0

ptapE = U praPE(n?) = U NDTAPE (ni) = npTAPE
i>o i>0

(N)DEXP-TIME = U (N)DTIME (217)
, i>0

DEXP-TAPE = U DTaPE(2'").
. i>0

A transducer, T, is said to be polynomial time bounded if there

is some polynomial p(n) so that T, when considered as a multi-tape
TM runs in time p(n).

A transducer, T, is said to be a linear time transducer if there

is some constant, ¢ > 0, so that T, when considered as a multi-tape
TM, runs in time cn.

A set A € I* is said to be reducible to a set B & T* if there
is some transducer T such that T: I* - I'* and T(x) e B iff x € A.
. A is said to be reducible to B in polynomial time (p-reducible) if

the transducer T runs in polynomial time. Similarly if T runs in



linear time A is said to be linearly reducible to B.

A set, B, is C-hard for some class of sets C (e.g. NP or
NTAPE(n)) if for évery A € C, A is p-reducible to B.
"A set, B, is éomglete for ¢ if it is C-hard and B € C.
A set, B, is C-hardest if B is in C and every A in C is linearly
reducible to B. For example, hardest languages exist for the
families of context-free languages, context-sensitive languages,
deterministic context-sensitive languages, etc. but not for NP or PTAPE.
.We say that a set A, A f}i*, is p-sparse iff there exists a

. polynomial p(n) such that

[{w | w € A, |w|sn}| < p(n).

III. Polynomial Time Isomorphisms

In this section we investigate polynomial time isomorphisms
between languages. -

We say that A and B are Efisomorghic iff there exist surjection
£: I* » I'* such that f is a p-reduction of A to B and £l s a
p—reducfion of B to A.

We now prove a polynomial time bounded equivalent of the

Cantor-Bernstein-Myhill Theorem.

Theorem 1: Let p and q be length increasing invertible p-reduction

of A to B and B to A, respectively. Then A and B are p-isomorphic.

Proof: From p and q we will construct a surjection ¢ such that ¢

-1 .
and ¢ are p-time computable and

w e A iff ¢(w) € B.



We note that

* = * =
L Rlu R, and T slt.Js2

R, = {(qop)kxl k 2
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and x # a(y)},

~
v

R, = {ge(peq)¥x| k > 0 and x # p(y)},

s, = ((pea) x| Xk 2

v
o

and x # p(y)},

=
\2

s, = (po(qop)kxl > 0 and x # qly)}.

Let s(n) be a polynomial such that p, Q, p-l and q‘1 can all be
computed by deterministic TM's within s(n) steps for inputs of

length n. We assume that p—1 and q_l both output a special symbol,

*, if they are'undefined. This is permissible since they are polynomia

time bounded. ¢ and ¢_l will be computed by the following

$(2) = p(z) if z e*Rl

alz) if z e Ry,

oY) =(p ) ifzes,

q(z) if z € Sl.

First notice that ¢ maps Rl onto s2 and R2 onto s1 and in fact
¢ and ¢-1 are inverses.

We will now describe a transducer, T, which computes ¢ and is
polynomial time bounded. We describe T by means of the following

flowchart:



Flowchart Computing T(z) = ¢(z).



As p and q are both length increasing p ' and q-l are length
decreasing and so T need cycle thru the loop at most l;l times.
At most (]z] + 1) evaluations of p_l, q-l, or p are therefore
required and so T runs in time at most (n+2) s(n) which is a
polynomial.

We note that identical considerations show that ¢-1 is also
p-time bounded.

Corollary 2: If p, q, p—l, q-l of Theorem 1 are computable in linear

time then ¢ and o—l are computable in nz-time.
Proof: Previous proof carries through.

In order to simplify the application of Theorem 1 we now establish
two technical results which can easily be applied to show that many
complete sets are p-isomorphic. We first define padding functions
and show that if either set A or B of Theorem 1 (or Corollary 2)
have padding functions satisfying some simple hypotheses, then we can
remove the length increasing restrictions from the hypothesis of these

results.

Definition: Let A € I*. Then SA: L* + I* is a padding function

for a set A if it satisfies the following two properties:

1. SA(x) e iff x e A

2, SA is invertible (i.e. one-one).

We say that a padding function, SA, has time compiexity t(n)

if both SA and SA-1 may be computed by deterministic Tm's in time t(n).

Lemma 3: Let f be a one-one, p-time reduction of A to B and let

f-l also be computable in p-time. Assume also that either A or B
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has a padding function sx (X=A,B) which satisfies conditions:

1. Sx has polynomial time complexity s (n).

L\fyle(y)I’IYI2 + 1.

Then there exists a reduction f' of A to B which is one-one, p-time,

length increasing and has (!:")"l computable in p-time.

‘lemma 4: If f, f-1 have linear time complexity; Sx has linear time

complexity and condition 2 of Lemma 3 is replaced by
22 Wy s ) > 21yl + 1
then f' of Lemma 3 exists and has linear time complexity.

Proof: diet X=A and let f, f-l be computable in polynomial time.
Let g(n) be a polynomial time bound in which f and f-1 can be computed.
Then, by condition 2 on the padding function we know there exists an
integer r such that for all x lsi(x)l > q(|x|) therefore it follows
that Ifosi(x)l > |x|, since if ]foS;(X)I < |x| then (as £7! can
output at most one digit per move) If-lofosi(x)l < a(|x|), which is
a contradiction. So define f' = fosi, by the reasoning given above,
f' is leﬁgth increasing and clearly-satisfies the other requirements

of Lemma 3.
For X=B and f, f—l polynomial computable we again know that

there exists an integer r such that for all x lsg(x)l > q(|x]) and
also as above q([£(x)|) > |x|. Let f' = Sgof then
I£' G| = Isp(Ex))|> a(l£(x)]) > |x| as needed.

For the linear time bounds a more careful time analysis yields

the desired proof.

The primary difficulty invapplying Theorem 1 is now seen to be

verifying that a given reduction can be inverted in polynomial time.
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It is seen that the existence of an invertible reduction depends
solely on the richness of the structure of the target set.

Lemma 5: Let A be a set for which two p-time computable functions

SA(-.-) and DA(-) exist with the following properties:

1. V¥x,y S,(x,y) € A iff x € A

2. ¥x,y D, (5,(x,y)) = y.

Then if f is any p-time reduction of C to A; the map f'(x) = SA(f(x),x)

is one-one and invertible in p-time.
Proof: Assume f'(x) = f'(y). Then

x = D(f'(x)) = D(S, (£(x),x)) = D(f'(y)).= D(S, (E(y),y)) =y
so f' is one-one. If we define |

q(x) = if "x = SA(f(D(x)),D(x)) then D(x) else *

-1

we see that q(f'(x)) = x so q = (f') and a straightforward time

analysis shows f' and q are both p-time computable.

Lemma 6: If SA, D, and f of Lemma 5 are all linear time computable .

the so is f'.
Proof: Straightforward.

We now define a number of known NP-complete problems: .

3|M, |t
i
1. UNIV {CODE(xlxz...xn) M IM, accepts Xy

steps}, where CODE(xlxz...xn) is a simple digit by

ceeX in t

digit encoding of xX,...x so that |CODE(x)|=|Mi| [HH] .

2. CNF_SAT - given an encoding of a boolean expression in
conjunctive normal form, is there some assignment
of truth values to the variables which gives the

expression the value true [C].



3. INEQ[O,1,),(,+,*] - given an encoding of two regular expressions -
over 0,1,),(,+,* ; do they represent
different sets [MS].

4. CLIQUE - given an encoding of an undirected graph and an
integer k, is there a subset of k-mutually adjacent
nodes [K].

5. HAMILTON CIRCUIT - given an encoding of a directed graph is
there a cycle including all nodes which
does not intersect it self [K].

We now apply our results to prove that large numbers of NP-
complete and PSPACE complete problems are p-time isomorphic. We
stress that we know of no complete problems for either class which
could not easily have been added to the appropriate lists. Further-

more, all our attempts to construct such problems have .failed.

Theorem 7: The following NP-complete problems are p-time isomorphic:

l. UNIV,

2. CNF_SAT,

3. INEQ[O,1,), (,+,°],

4. CLIQUE, :

5. HAMILTON CIRCUIT.
Proof: We first show that CNF_SAT has a padding function satisfying
Lemma 3 and functions SA(-;-) and DA(-) satisfying Lemma 5. Then
any set satisfying Lemma 5 will automatically be p-isomorphic to
CNF_SAT since Lemma 3 will guarantee all reductions can be taken
length increasing and Lemma S5 will show they are all one-one and
invertible.

Consider the function SA(w,y), which is computed as follows:



It examines w to determine if w is a Boolean formula, B, in
CNF. If not r=0. If yes, let RyreoerX, be variables appearing in
B (or at least including every variable in B). (The value of r can
be determined in p-time.)

SA(w,y) =W A (xr+l vV A xr+l) AZY]ANZyA e AT where zj

xr+1+j if y(3)=1

is the literal zj = Thus, w is satisfiable

b} xr+l+j if y(3)=0"
iff SA(w,y) is satisfiable. SA(-,—) is clearly p-time computable
and a function DA which examines a étring to determine if it has a
suffix of the proper form and if so translates it appropriately will
also be in p-time. SA(—,-) and DA(—) together satisfy Lemma 5.

The padding function needed for Lemma 3 is defined by

S(w) = SA(w,Olwl2+l), which clearly satisfies Lemma 3.

We now show INEQ satisfies Lemma 5 and so is p-time isomorphic
to CNF_SAT : SA(w,y) first checks that w = Ri # Rz. If so it outputs
(R, + Only)#(R2 + 0"ly) [where n = IRl#R2|] if not it outputs
wi#y.. The obvious DA works.

UNIV - SA(w,y) encodes y in inaccessible new states of Mi ana.
adjusts #'s at end to accomodate new states.

CLIQUE : SA(w,y) checks that w has format k# G, where G is the
encoding of some graph, determins highest labelled vertex, r, used
in G. G has vertices vl,vz,...,vr. SA outputs (k+1)#G' where G'

. . .
has vertices vl'v2""’vr’vr+l’vr+2""’vr+2|y| where G' has the edges

of G plus Vj <r, Vi < |y| G' contains edges (vj, v_,..) if y(i) =1

r+2i

r+2i-1) if y(i)=0. This S, and the obvious D, work.

Hamilton circuit: SA(w,y) checks that format is correct and'.

and (vj;v



15

inserts vertices where r is the highest numbered vertex in G.
vr+1'vr+2'vr+3""’vr+3|y|+1' an edge from Ve ¥ Vi, edges and ¥ < ly|

( "for k=2,3

Vr+3(§-1)+k ' Vr+3j+1)

(Vet3(5-1)+2"Ve+3(5-1) +3

(Vr+3(j—1)+3’vr+3(j—1)+2)

and 1f y(3)=1  (Vp,3(5-1) 41 Vea3 (§o1)+2)

if y(3)=0 Vr43(3-1) 41" Vr43 (§-1) 43
r+3|yl+l'vi) e G' .

Again the obvious DA map also works.

and if (vr,vi) € G put . (v
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Ve43(3-1)+2

Ves3(j-1)+

Ved3j+l

Vr+3(§-1)+3

SECTION OF GRAPH INDICATING y(j)=1

Vi3 (3-1)+2

7

v . .
S, 30G-bH Vr+3j+l

Ve43(3-1)43

SECTION OF GRAPH INDICATING y (3)=0

ENCODINGS IN HAMILTON CIRCUIT




We note that in other known NP problems it is possible to
encode the necessary information in a manner not affecting whether
a given string is in the language. We note specifically that this
technique shows the "simplified" NP-complete problems of Johnson,i
Stockmeyer, and Garey [GJS] are all p-time isomorphic.

One may argue that our isomorphisms are unnatural, that they
were constructed through recursion theoretic techniques which are out
of place in discussions of combinatorial problems. We will show,
however, that with a little care our results yield not only isomorphisms
between the various problems, but in fact, isomorphisms that preserve
the underlying combinatorics.

Given a boolean formula in CNF, we may ask how many distinct
variable assignmepts_there are which produce a true value for the
formula. Similarly, if we were given the encodings of a pair of
regular expressions, R1 # R2, we might ask how many strings are accepted
by one and not the other. For a ;anguage L and a fixed w e L, we
will call each "piece of information" which evidences w € L a solution

to the (w,L) problem. We use the following notation:

Ssol(w,L) {x|x encodes a solution to the (w,L) problem}.

Sol (w,L)

¢ if w@g L.

It is, in fact, solutions of the various problems which are of
practical importance in computing. We are interested in the elemeqts
of SOliW,L) and not merely whether |Sol(w,L)| > 0. It is of little
use to a multi-process scheduling algorithm to know that there is a
schedgle of a given cost; the schedulor must determine the optimal

schedule.



Definition: If A and B are NP-complete problems and f:A - B is a
polynomial time reduction, we say that f is parsimonious if w
|sol(w,A)| = |Sol(f(w),B)].

Parsimonious reductions have been studied before ([SI] and it turns
out that many of the well known NP-complete problems are related by
parsimonious reductions. We feel that a parsimonious reduction should
be considered natural since they do not introduce "new"” solutions but
yield translated problems whose solutions are in one-one correspondence
with the solutions of the original problem.

We now state and prove our main result concerning parsimonious

reductions:

Theorem 8: Let A be any NP-complete set for which there exist parsimoniou
p-time reductions f:A » CNF_SAT and g:CNF_SAT » A. Let A have functions

SA(-,~) and D, as in Lemma 5, and furthermore assume that

A
Vx_e (0+1) * SA(-,x):A + A is parsimonious; then the isomorphism

$:A > CNF_SAT guaranteed by Theorem 1 is parsimonious.

Proof: We first note that the composition of parsimonious reductions
is parsimonious. Unfortunately, the SCNF_SAT(-’_) function defined
earlier is not parsimonious; however the function
SCNP(w,y) =W A (xr+1_v xr+1) A zZya IRRRY with zj as before is
parsimonious.

Since SCNF(-'-) and SA(-,-) are both parsimonious we know, via
Lemma 5 and the observation above that the f, and g, of Lemma 5 will

in fact be parsimonious.
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Again S F gives us a padding function for CNF_SAT (the function

CN
is now parsimonious) which by Lémma 3 tells us the conditions of
Theorem 1 are now satisfied. This time, however, all constituents
of our isomorphism are parsimonious and since the isomorphism is
constructed by application of these reductions, we have that the
isomorphism is parsimonious.

We note that the encoding functions of the NP-complete problems
INEQ, UNIV, and CLIQUE are all parsimonious, and also that they are

each related to CNF_SAT via parsimonious reductions [SI] therefore we

have

Theorem 9: The following NP-complete problems are p-time isomorphic

via parsimonious mappings:

1) CNF_SAT,
. 2) INEQ,

3) ‘UNIV,

4) CLIQUE.

Proof: Theorem 8.

We now turn our attention to languages complete for PSPACE.

We again first define a number of PSPACE complete problems:
timM, |
o i

1. UNIV - {M #CODE(x)...X )4 [M; accepts x,...x on t+n tave

squares} [HH]

2. QBF - Given a quantified boolean formula, e.g. -
VX13XZVX3(x1 vV o xz) A (x:L v x2 v x3), is it
true. [MS]

3. HEX - Given a graph and two distinguished vertices a game
is defined in which the two players alternately choose
vertices. . Player 1 wins if he is able to choose

vertices which define a path in the graph between the

e
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4. Ly, - (R|R is a regular expression and L(R) # £*} [MS)

Theoreﬁ 10: The following PSPACE complete problems are p-time

isomorphic:

1. UNI1V,
2. QBF,
3. HEX,

4. Lg,.
Proof: By the same method used to show CNF could be padded in
Corollary 7 we see QBF has padding and SA(-,-); DA(-) functions.

SUNIV encodes the second argument in inaccessiblé states as

before
SHEX encodes the second argument in dead end paths
n n+l
Spu (X,¥) = (y+(A+041)7 + (0+1)777x) n = |y|

in all cases the obvious D(-) function works.
We now prove a metatheorem which extends the previous result
to tape complete decision problems concerning regular expressions.

Define
x\L = {w|xw € L} and L/x = {w|wx e L}.

Theorem 11: Let P be any predicate in the regular sets over {n,1}

such that

1. p({0,1}*) = TRUE

2. P = u . {(X\L|P(L)=TRUE} [or Pp = u {L/x|P(L)=T}
x e {0,1} x € {0,1}*
is not the set of all regular sets over {0,1}
3. L, = {R|R is a regular expression over {0,1} and P(L(R)) = Fals

is in P-TAPE.
Then L_ is p-time isomorphic to LZ*'

Proof: Any L, where P satisfies conditions 1 and 2 above is



In order to show the isomorphism we must find S and D.
Let b -ti i
¢ be the p-time map such that R € LP iff ¢(R) e LE* and let L, be
reqular set over {0,1} not in PL as in [HH]) define h,(0) = 00 and
h,(1) = 01. We note that the map .

v
Ri + h,(Ri) =10 - (0+1)* + (00+01)*-10'RLo + (00+01)* [A+0+1+11(0+1) *]
has the properties:
1. R; € L;, iff V(R,) € Ly
2. ¢y is p-time invertible.

We now define Sp (x,¥) = ¥ (S5, (9 (x),y)) we note D, (x) = (DZ,(W—I(X)))

is the required D function. Since L, is PSPACE complete and satisfies

P
Lemma 5 the sets L, and Lz* are p-time isomorphic, as was to be

shown.

IV. Density Considerations

We recall that a proof that no p-sparse set can be NP complete
would imply that P # NP. We cannot solve this problem but we can show
that some other complete and hardest sets cannot be p-sparse.

We prove next, as first observed by A. Meyer [M], that complete
sets for EXPTIME and EXPSPACE cannot be p-sparse. Furthermore, using
a very reéent result from [HPV] we show that the hardest context-
sengitive languages are not p-sparse. Thus showing that a single
letter alphabet language cannot be a hardest csl. We also conjecture

that the hardest context-free languages cannot be p-sparse.

Theorem 12: No p-sparse language A can be complete in EXPTIME or

EXPTAPE. Thus A _ a* cannot be complete in EXPTIME or EXPTAPE.



Proof: We will prove this result by constructing a set A, with the
following properties:

a) A, is in EXPTIME

b) A, is not p-sparse

c) if A, is p-reduced to a set B by the mapping p then p is a
one-one mapping almost everywhere.

We not describe a TM, M, which accepts A,. M will be a
multitape TM which on input w computes as follows:

1. on one of its tapes M writes down 1#10#11#...#|w|#. Each
integer will be treated as the encoding of a transducer, Ti and

Ti(x) will be limited to |x|l steps so this list will eventually

cover all polynomial time bounded transducers. The list can be
written down in time 0(w3) so there is some c such that for all

n > 1 the time required to carry out step 1 on input of length n is
iess than 2°7,

2. for i=1 to |w]|

for each x such that 2l+1

<X <w do
a. compute |x|* for 21%] steps.

b. if computation a. completed then compute Ti(x)
for |x|* simulated steps (call this case I)

or
compute Ti(X) for lel actual steps (case II) which
ever comes first
c. if case I above occurred store (x,i,Ti(x)) on
storage tape
(since a., b., and c. are each limited to Zle steps and they must
be carried out at most wzlwl times there is some c' such that 2. can

"lwl
.

be completed within 2 Also for large |w| case II never occurs)



3. Construct two lists L1 and L2 as follows:

for i=1 to |w|
find (if it exists) the smallest x < w which satisfies
a) there is some y < x for which Ti(x) = Ti(y)
(Ti(x) and Ti(y) must be listed in step 2)
b) for all z (x,z) is not on L2 if such an x is found,
take smallest y for which Ti(x) = Ti(y) and put
(x,y) on L1 if no such x is found put i on L2'

b4 . .
! l and comparisons on a multitape

(The length of Ti(x) is less that 2
machine can be done in linear time so step 3 can be carried out in
" time zc"lwl for some c").
4. In ascending order, for each i € L2

for x=w perform steps 2a. and 2b. If computations

complete find smallest y < w for which Ti(y) = TiTw),
determines length of longest chain. (y,xl)(xllxz)...(xz_l,xl)
entirely on Ll’ M accepts w iff 2 = 2m+l for some m

if no such y has been found for any i on list L2 then M

accepts w.

This last step can also be carried out in exponential time and so
the entire machine has T(M) in DEXPTIME.

It should be clear that for every polynomial time bounded machine
T; there is some integer n, so that for all x, x| > n,, the
simulation of Ti on x will be completed within 2Ixl steps and that
therefore no p-time reduction, f, for which there are infinitely
many pairs (xi,yi) with f(xi)= f(yi) can reduce A,.

Note that step 3. in the process constructs the past history

of M relevant to M's action on w.
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Since for every EXPTIME (and ExPTAgB):cdmplete.set, C, we
know there must be some p-time reduction f:A, + C and since A, coﬁtains
about 2"-n elements of length }ess than or equal to n, we have that
there is some n, for which [{x]x e c and |x]| < rnc}l > 2%, This
immediately implies, that no p-sparse set can be EXPTIME or EXPTAPE
complete. This completes the proof.

We now turn our attention to hardest context-sensitive languages.

lemma 13: There exists a recursive function ¢ such that for all

linear time transducers Mi

Mo(i) is a 3 tape transducer satisfying:
1) Vx Mi(x) = Mo(i)(x)
2) 3c depending only on ¢ such that Mo(i) never -scans more

x
than clMi'TB%T%T squares on its work tape when

processing x.

Proof: Follows from efficient simulation tecﬁniques of Hopcroft,

Paul, and Valiant in [HPV].

We can now make use of the above transducer to enable us to

diagonalize over linear time transductions on linear tape and get

the following result.

Theorem 14: The hardest context-sensitive languages cannot be

p—spérse. Thus no sla language can be a hardest csl.

Proof: We describe a Tm M which accepts a csl which is not p-sparse
and such that any linear-time reduction of this language to another

language must be one-one almost everywhere.

M behaves as follows on input w, w € £*, |I| > 1:



1. writes down as many of the space bounded transducers

-
logn
which simulate the linear-time transducers as possible on linear

tape,

2. dctermines which of the transduccrs Mi have been elininated
while processing x < w, (i.e. M recomputes what it did for all previous
inputs and keeps a list of the transducers which were eliminated).

3. for each Mi listed but not eliminated in increasing order M

find smallest x < w such that

1) Mi(x) = Mi(w)
2) Mi(x) = Mi(w) can each be computed (although not

. .necessarily written down) in |w| tape.
If such an x is found, eliminate Mi and w is accepted iff x was
rejected. If no such x is found for any i accept w.

The set accepted by this TM clearly has the property that if
£:T(M) + A is a linear time reduction of T(M) to A then f is one-
one a.e. Since for every n there are at least 2" inputs of length n
and at most n traﬁédncexs<haxeuheenpcheeked,.ue see .that T(M) is not

a p-sparse set.

This shows that no hardest csl's can be sla languages nor can
they by p-sparse, as was to be shown.
These results can easily be extended to the following.

Corollary 15: Let L(n) > n be tape constructable. Then the
hardest language for TAPE[L(n)] cannot be p-sparse. Let L(n) be

tape constructable and such that for every k

- lim nk

n+e “L(n) 0,

then the complete languages of L(n) cannot be p-sparse.



V. Conclusion

A number of interesting and apparently difficult problems
sugyest themselves immediately from this work. As we have noted if
all NP complete problems are p-isomorphic then P # NP and if all
PTAPE complete problems are p-isomorphic then P # PTAPE. Thus the
question whether all NP and PTAPE complete sets, respectively, are
p-isomorphic could be a very important and hard question. Similarly,
‘the problém about the existance of sparse coniplete sets for NP and
PTAPE seems very difficult and could help crack the P=NP=PTAPE?
problem.

As a matter of fact, the sparsness question suggests a possible
way of approaching the P = NP? problem. We know that if nondeterminism

is used very little to accept a set in NP, say no more than logn times
for inputs of length n, then the set is in P. Thus P # NP only if

nondeterminism must be and extensively durin§ computations. We

conjecture that there are no NP complete set such that nondeterminism
is used only on a sparse set of inputs and furthermore, we conjecture
that extensive use of nondeterminism must lead to many rejections and
accepﬁances or the nondeterminism can be eliminated. 1In other wor&s,
if an essential use of nondeterminism is made in accepting a language
then‘the nondeterministic choices must be "real"™ choices in the séﬁse
that many inputs are accepted and many others rejected. Thus neither

L nor L could be sparse and therefore we would have shown that P # NP,
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What about EXPTIME and EXPSPACE complete problems? We know
that they cannot be sparse, are they all p-isomorphic? Similarly,
are hardest context-sensitive Ianéuages all p-isomorphic?

We feel that these are important questions and that the techniques
needed to solve them are likely to hold insights for other problems
in computer science. We also believe that the study of the density
properties of NP complete sets may yield a real insight in the
nature of non-deterministic computations and can contribute to the

solution of the P=NP? problem.

——
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