











MOUNTAINS, CLIMATE,
AND GLOBAL CHANGE

rocesses that shape the surface of the

earth involve a complex interplay

among rock, water, air, and living or-
ganisms. A growing awareness of how much
these different realms influence each other is
promoting a revolutionary integration of ge-
ology and other fields such as atmospheric sci-
ences, hydrology, oceanography, and biology.
The neat divisions between traditional disci-
plines have proven an obstacle to understand-
ing the highly integrative, nonlinear systems
that are beginning to emerge. In consequence,
anew, open-ended, interdisciplinary approach
is taking shape.

During the mid-1980s, members of the
Cornell Andes Project won grants from the
National Aeronautics and Space Administra-
tion (NASA) to acquire and study satellite im-
ages of the Andes. The collection of Landsat
Thematic Mapper images now covers the en-
tire central Andes of southern Peru, Bolivia,
and northern Chile and Argendna. To help
analyze this data, the projectalso acquired what
has become one of the most powerful com-
puter systems on campus. Large sets of digital
geological and topographic data were devel-
oped, and the first regional topographic im-
age of the central Andes was produced.

This material opened up a completely new
and unprecedented view of mountain belts that
dramatically emphasizes the earth’s surface as
a highly complex zone of interactions between
the solid earth and the atmosphere. Over the
years, three closely related research areas,
which differ in the time scale of what they
study, have developed. The first, which focuses
on the evolution of mountain belts, deals in
millions to tens of millions of years. During
these greatspans of time, cyclical ice ages stand
out as the most important feature of climate-
mountain interaction. The second area of re-
search zooms in to examine the most recent
ice age and the profound changes in climate
that have occurred since that ime, which pro-
vide climate modelers with the best test of their

by Bryan L. Isacks

predictive efforts. The third area focuses on
the mountain/climate system as it operates at

present, and how it is changing in accordance

with both natural processes and those induced
by human activity. Specific projects illustrat-
ing each of these three areas are described
below.

Mountain Belts As

Erosional Machines

A research initiative in which I am involved,
along with Associate Professor Teresa Jordan,
research associate Eric Fielding, and graduate
students Jeffrey Masek and Christopher
Duncan, involves looking at the earth’s moun-
tain belts in terms of both the internal process
of crustal thickening and the climate-driven
processes of erosion. When the earth’s crustis
thickened by deformation or volcanism, it
floats high in hydrostatic or isostatic equilib-
rium on the denser substrate of underlying
mantle. The height of the mountain surface
provides the potential energy for water to do
its erosional work on the landscape. In an ac-
tively growing mountain belt such as the Andes
or the Himalayas, the mountains affect climate
by focusing precipitation along one side of the
belt, which skews the effects of erosion. When
moist air flows toward the mountain belt, as it
does in the Amazonian headwaters on the east-
ern side of the Andes and along the Hima-
layan edge of the Tibetan plateau during the
monsoon, the upward movement caused by
the topography causes the moisture to con-
dense, producing a band of intense precipita-
don. This precipitation is most concentrated
where the slope is steepest, which maximizes
the ability of the erosional process to carry mass
away from the mountain belt. Indeed, this
combination of circumstances can produce the
world’s highest rates of erosion. We are now
looking into the exciting possibility that these
high erosion rates may control the nature and
rate of the deformational processes causing the
uplift, so that the interaction of mountain belts

“the earth’s surface
[15] a bighly complex
zome of mteractions
between the solid
earth and the
atmosphere.”
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THE CORNELL ANDES PROJECT
An Interdisciplinary Study of Mountain Building

he Andes are one of the most spec-

tacular mountain ranges on earth,

with the highest peaks in the west-
ern hemisphere—or, for that matter, in the
southern hemisphere. The Andes are pro-
duced by a relatively simple geologic process:
the subduction of the Nazca Plate beneath the
South American continent. The Nazca Plate,
which underlies a part of the Pacific Ocean, is
moving to the east-northeast at a rate of about
10 centimeters per year. The force of its colli-
sion with the Americas Plate has spawned the
largest earthquake on record (8.0 on the Rich-
ter scale, in Chile in 1960) and the highest ac-
tive volcanoes on earth (Ojos del Salada and
Llullaillaco, more than 6,800 meters above sea
level).

The construction of mountain belts like the
Andes is a first-order process in the produc-
tion and modification of continental crust,
which covers about 30 percent of the earth’s
surface. Such mountain belts are of consider-
able economic importance because they are
the source of much of the world’s hydrocar-
bon and mineral resources. The Cornell Andes
Project seeks to understand the formation and
evoluton of the Andes because they are typi-
cal of mountain belts that form along conver-
gent plate margins, and what is learned here
can be extrapolated to older mountain belts,
such as those in the western United States,
where orogenic processes are no longer active.

A Confederation

of Individualists

The Cornell Andes Project began in the 1970s,
when Cornell geophysicists led by Bryan Isacks
and Muawia Barazangi used earthquake data
to define the shape of the subducting plate.
Realizing the importance of first-order geo-
logical variations in South America, they be-
gan recruiting other geologists in the early
1980s. One of the strengths of the Depart-
ment of Geological Sciences is the complete
integration of geological and geophysical re-

search, and faculty members with a variety of
specialties joined the project. Current mem-
bers are Richard W. Allmendinger, Arthur L.
Bloom, Bryan L. Isacks, "leresa E. Jordan, and
Suzanne Mahlburg Kay. Assisting them are
three research associates, eleven graduate stu-
dents, and several undergraduates, who par-
tcipate in fieldwork as well as laboratory stud-
ies and computer work at Cornell. Since its
incepdon, the project has generated thirteen
doctoral dissertations (with five more to be
defended as this magazine goes to press), well
over one hundred publications, and several
million dollars worth of sponsored research.

Organization is still informal, however.
Large projects are usually supported by a single
large grant and structured hierarchically, with
a principal investigator and expanding tiers of
secondary investigators, post-doctoral associ-
ates, and graduate and undergraduate students.
In contrast, the Cornell Andes Project is or-
ganized as a federation of separately funded,
smaller projects whose members trade ideas
and information in free-wheeling weekly semi-
nars. Participating faculty members are re-
sponsible for generating their own research
ideas, procuring their own funding, support-
ing their own graduate students, and writing
their own papers. This egalitarian structure,
in which “big science” is conducted as “small
science,” fosters a competitiveness and enthu-
siasm that challenges authority and stimulates
creativity.

International Collaboration

and Industrial Support

Another key factor in the success of the project
is close collaboration with colleagues in Ar-
gentina, Chile, and Bolivia. Geologists from
academia, government agencies, and state-run
petroleum companies are involved in most
aspects of the work. They participate in field-
work and coauthor articles, and many have
visited Cornell. Reciprocally, faculty members
from Cornell have spent sabbatical leaves and

“I'he construction of
mountain belts like
the Andes is a
frst-order process

in the production
and modification

of continental

crust. ...”
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EARTHQUAKES AND OIL
Collaborative Research in the Arab World

he complexity of tectonic processes

in North Africa and the Middle East

is only surpassed by the complexity

of the region’s politics. Three destructive
earthquakes in the early 1980s (in Algeria,
Egypt, and Yemen) catalyzed an initiative to
better understand these processes. The Pro-
gramme for Assessment and Mitigation of
Earthquake Risk in the Arab Region (PA-
MERAR) was set up by the United Nations
Educational, Scientific, and Cultural Organi-
zation (UNESCO) to provide a comprehen-
sive plan for assessing and addressing earth-
quake hazards. I was one of nine scientists
selected by UNESCO to carry out the study.
So far, PAMERAR has been active in Al-
geria, Jordan, Morocco, Syria, Tunisia, and
Yemen. It has provided detailed guidelines on
how to initiate and implement a comprehen-
sive program of earthquake-hazard assessment
and how to mitigate, insofar as possible, earth-
quake risks. In the course of this work, close
relationships have been formed between Cor-
nell and many institutions that deal with the
earth sciences. This has led to collaborative
projects that seek to better understand the geo-
logical processes that have shaped the region.
Much of the work is basic research, but it also
has implicatons for earthquake preparedness
and for the utilization of petroleum resources.

by Muawia Barazangi

Setting up

Seismic Networks

A National Seismic Network of twenty-five
stations has recently been established in Mo-
rocco. Data recorded by this telemetered digi-
tal network, as well as other data (including di-
gital topography and gravity measurements,
seismic reflection and refraction profiles, and
Landsatimagery), will all contribute to the as-
sessment of earthquake hazards. They will also
make possible a better understanding of the
crustal and upper-mantle structure of the intra-
plate Atlas Mountain belt, which is fundamen-
tally different from most mountain belts lo-
cated along convergent plate boundaries, such
as the Himalayas and the Andes. The project
was set up as a cooperative venture involving
Cornell and the Morocco National Research
Center, in Rabat, as well as the Scientific In-
stitute of Mohammed V University, the Geo-
logical Survey, and the Petroleum Ministry.
Cornell’s partin the project is currently funded
by the National Science Foundation.

A similar network of telemetered seismic
stations will soon be set up in the western part
of Syria. The system, which will record data
in both analog and digital form, will be used
to study earthquakes occurring along the Dead
Sea Fault. On November 25, 1759, an earth-
quake on this fault measuring an estimated 7.4

“Much of the work is
basic vesearch, but it
also has implications
for eavthquake
preparedness and for
the utilization of

petvoleum vesources.”

Figure 1. North Africa and the
Middle East. Contacts are
maintained between Cornell and
earth scientists in all the
countries labeled.
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Figure 2. An east-west seismic
reflection profile across the
Williston Basin in Montana and
North Dakota. The 300-
kilometer-wide arch in the center
is composed of Precambrian
crustal material that was caught
between converging continents.
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further north, in Canada, but buried under the
younger sedimentary rocks of the Central
Corridor of the United States (see Figure 1).
The result of a Precambrian tectonic event,
the Trans-Hudson Orogen was formed about
1.8 billion years ago when crustal material was
caught between two older colliding blocks—
the Churchill Province to the west and the
Superior Province to the east. A COCORP
transect across this buried feature (Figure 2)
shows relicts of the ancient subduction zones
dipping under each of the colliding continents.
The outward-dipping subduction zones make
the Trans-Hudson look, in seismic section, like
a 300-kilometer-wide arch. Far to the north,
a similar structure has been detected by
LITHOPROBE, indicating a striking conti-
nuity of structural style over a distance of hun-
dreds of kilometers.

A curious feature overlying the Trans-
Hudson in the United States is the remark-
ably circular Williston sedimentary basin.
This is a prime example of a class of myste-
rious basins and domes that occur within
continental plates and lack any obvious
connection with known tectonic processes.
Some analysts have argued that the Williston
Basin formed over a crustal rift, but the seis-
mic data do not support this interpretation.
Whether the presence of the underlying
Trans-Hudson deformational belt influenced
the later development of the Williston Basin
is sdll being debated. Last year, COCORP
used shock waves generated by explosives to
probe even deeper, and this revealed reflec-
tors below the Trans-Hudson deformation.
One possibility under investigation is that these
reflectors represent mafic intrusions, which
could have undergone a phase change,

weighting the lithosphere and pulling it
down to create the basin’s circular form.

Large parts of the eastern and south-cen-
tral portions of the Central Corridor are un-
derlain by a seismically layered sequence of
ancient Precambrian age, which is being in-
vestigated by the second author. This sequence
is significantly thicker in places than the shal-
low sediments that overlie and conceal it. The
nature of these layered rocks is still a mystery,
but they may be either volcanic or sedimen-
tary. If the layers are volcanic in origin, they
could reveal the history of the so-called Gran-
ite-Rhydite Province, which represents a ma-
jor period of crustal melting in the mid-
continent. If, on the other hand, they are
relatively undeformed sedimentary rocks
within the Granite-Rhydite Province (even if
older and beneath a volcanic veneer) they could
constitute a major unrecognized basin that
might, despite its Precambrian age, have oil
and gas potential.

The Flow of Pore Fluids

and the Accumulation of Resources

The Precambrian basement of the Central
Corridor has been covered by sediments and
swept by migrating pore waters that altered
the sediments and concentrated minerals and
hydrocarbons to economically recoverable
deposits. The current distribution of lead-zinc
and hydrocarbon accumulations suggests that
the deposits were produced by the compactive
expulsion of pore waters that occurred when
the borders of the Central Corridor were over-
thrust during the formation of the Appala-
chian, Ouachita, Wyoming, and Rocky Moun-
tains. Jack E. Oliver has called these resources
the “spots and stains” of plate tectonics.


















MANTLE PLUMES
AND OCEANIC VOLCANISM

“plate tectonics
provides no direct
explanation for
volcanism at hot

spots”
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by William M. White

olcanism is one of nature’s most

spectacular phenomena, and the

explosions of Thera, Vesuvius,
Krakatoa, and Pelée rank among history’s
great natural disasters. From time immemo-
rial, erupting volcanoes have inspired fear
and awe. But only recently have geologists
begun to understand the processes that give
rise to volcanoes.

From the perspective of plate tectonics,
volcanism occurs in three settings: at diver-
gent plate boundaries (such as the Mid-At-
lantic Ridge and the East Pacific Rise), along
island arcs associated with subduction zones
at convergent plate boundaries (such as the
Aleutians or the Japanese archipelago), and
in association with “hot spots” that may oc-
cur either within plates (Hawaii) or along
divergent plate boundaries (Iceland), where
it is distinct in both composition and vol-
ume from normal plate-boundary volcan-
ism. Volcanism at the boundaries of diver-
gent plates and convergent plates can be
explained in terms of the physics of tectonic
processes. But plate tectonics provides no
direct explanation for volcanism at hot spots,
and this puzzling phenomenon has become
a focus of my research.

Hot spots seem to involve columns of
hot rock that rise buoyantly from deep in
the earth’s mantle. As these “mantle plumes”
approach the surface, decompressional
melting occurs, much as it does at mid-ocean
ridges, and the resulting magma makes its
way through the crust, producing volcanoes.
Mantle plumes appear to remain station-
ary for great periods of time, while crustal
plates slowly pass over them. This can re-
sult in a chain of volcanoes marking a suc-
cession of different places where a mantle
plume has “burned through” the crust.
There are a number of plumes beneath
the Pacific Ocean, and the northwestward
motion of the Pacific Plate has left several
parallel trails of volcanic islands and sea-

mounts (see Figure 1). Active volcanoes
occur only at the southeastern ends of these
chains.

The fact that the plumes remain station-
ary suggests that they must arise deep in the
mantle, well below the region of convec-
tion responsible for the motions of the
crustal plates. Numerical convection mod-
els have revealed that plumes only occur
when a heat source is placed at the bottom
of a convecting region, and do not occur when
the heat source is within the convecting
medium. This suggests that mantle plumes
may rise from the core-mantle boundary,
nearly 3,000 kilometers beneath the earth’s
surface. According to recent calculations,
the heat flux of all mantle plumes matches
the estimated flux from the earth’s core, sug-
gesting that mantle plumes may be the chief
mechanism by which the core is cooled.

The Chemistry of Magmas
and the Chemistry of the Mantle
Magmas that rise in volcanoes can be used
to make inferences about the chemistry of
the mantle from which they are derived. Of
particular interest are certain elements, such
as potassium, rubidium, and niobium, which
are severely depleted in magmas erupted at
mid-ocean ridges, but are found in high con-
centrations in the earth’s continental crust.
The best explanation of this difference
seems to be that these elements are not
readily accepted into the structure of the
mantle’s constituent minerals because of the
size or the charge of their ions. Rubidium,
for example, has an ionic radius of 1.5 A,
while available site radii generally do not
exceed 1.0 A, and niobium has a charge of
+5, while the elements for which it might
substitute have charges of +2 or +3. When
mantle melts, the “incompatible elements”
present in it tend to enter the liquid phase.
Throughout most of its depth, the mantle
is solid, although it is sufficiently plastic for


















FRACTALS IN GEOLOGY

“the absence of a

characteristic scale

(length or time) in a
problem directly
implies fractal
statistics.”

Figure 1. A simulated drainage
network. The pattern is
generated by random walkers
that move back and forth across
the surface; whenever they
encounter a canyon, it is
extended. Based on the number
and length of tributaries, the
network has a fractal dimension
of D=1.90.
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by Donald L. Turcotte

hen Benoit B. Mandelbrot

first introduced the concept

of fractals, he did so in a geo-
logical context, calling attention to the scale
invariance of a rocky coastline. When such
a coastline is measured, the shorter the mea-
suring rod, the longer the coastline. The
length of the coastline L and the length of
the rod rscale as a power law L ~ »'?, where
D is the fractal dimension. For a typical
coastline, D ~ 1.2.

Scale invariance implies the applicabil-
ity of fractal statistics. A power-law (fractal)
distribution is the only distribution that does
not introduce a characteristic dimension.
Thus, the absence of a characteristic scale
(length or time) in a problem directly im-
plies fractal statistics. In addition, many
modern approaches to extended nonlinear
systems result in fractal statistics. Examples
include:

* Sets of equations and maps that gener-
ate deterministic chaos;

® The renormalization-group approach
for which Kenneth Wilson (who was then
at Cornell) received the Nobel Prize in
physics;

* Statistical models such as percolation
clusters and diffusion-limited aggregation;
and

* Self-organized criticality.

Drainage networks, which have the form
of fractal trees, are an excellent example of
fractals in geology. The nearly universal
structure and fractal statistics of drainage
networks suggest that they are generated by
a well-defined physical process. Scale-in-
variant models based on percolation clus-
ters, diffusion-limited aggregation, and self-
organized criticality have all been used to
generate computer simulations of drainage
networks.




Figure 2. The drainage network

of the Volfe and Bell Canyons in
the San Gabriel Mountains, near
Glendora, California. This typical
S\ : network has a fractal dimension
of D=1.81.

A model produced through the use of
diffusion-limited aggregation is shown in
Figure 1. Seed canyons are introduced on
the lower boundary. Random walkers are
randomly introduced on the two-dimen-
sional grid; when a random walker encoun-
ters a canyon, the canyon is extended. The
accumulation of forty thousand random
walkers yields the result shown.

The model simulates the headward
migration of drainage networks that has
been observed in arid climates. An example
of a real drainage network is shown in Fig-
ure 2, a field map of the Volfe and Bell Can-
yons in the San Gabriel Mountains, near
Glendora, California. As can easily be seen,
the network has well-defined fractal prop-
erties that are very similar to the simulated
network illustrated in Figure 1.

Fractals are also proving useful in many
other areas of geology. The Gutenberg-
Richter relation for the frequency and
magnitude of earthquakes is a fractal. The
frequency-size distribution of volcanic erup-
tions is a fractal. Fractal statistics are being
used to estimate reserves of petroleum and
minerals. Fractal statistics are used to inter-
polate between wells in order to determine

the three-dimensional structure of petro-
leum reservoirs. Fractals and related con-
cepts provide a basis for understanding the
geometrical form of mountains and many
other fundamental geological phenomena.

Donald L. Turcotte is a specialist in fluid
mechanics who recetved the doctorate from the
California Institute of Technology in 1958 and
served on the faculty of Cornell’s Graduate
School of Aevospace Engineering before moving
to the Department of Geological Sciences in
1973. He is interested in the application of
dynamical systems to geological problems, such as
the mechanisms that drive the movement of
tectonic plates. He is a fellow of the American
Geophysical Union and the Geological Sociery of
America; in 1984 be was elected to the National
Academy of Sciences. From 1981 10 1990 be
chaired the department. His book, Fractals and
Chaos in Geology and Geophysics, is
available in paperback from Cambridge
University Press.
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FACULTY PUBLICATIONS

Current veserch activities in the
Cornell College of Engineering are
represented by the following publica-
tions and conference papers that
appeared or were presented during the
three-month period October through
Decemnber 1992. (Eavlier entries
omitted from previous Quarterly
listings are included bere with the
year of publication in parventbeses.)
The names of Cornell personnel ave in
italics.

AGRICULTURAL
AND BIOLOGICAL
ENGINEERING

Aneshansley, D. 7., and R. C.
Gorewit. 1992. Cow sensitivity to
electricity during milking. Fournal
of Dairy Science 75:2733-41.

Bell, 7. L., and T S. Steenbuis.
1992. Fast and far-reaching flow in
soil. Paper read at 84th Annual
Meeting, American Society of
Agronomy, 1-6 November 1992,
in Minneapolis, MN. (Agronomy
Abstracts, p. 32.)

Gebremedbin, K. G., §. A. Bartsch,
and M. C. Forgensen. (1992). Pre-
dicting roof diaphragm and
endwall stiffness from full-scale
test results of a metal-clad, post-
frame building. Transactions of the
ASAE 35(3):977-85.

Gebremedbin, K. G., H. B.
Manbeck, and E. L. Bahler. 1992.
Diaphragm analysis and design of
post-frame buildings. In Post-frame
building design, ed. J. N. Walker
and F. E. Woeste, pp. 358. St.
Joseph, MI: American Society of
Agricultural Engineers.

Gorewit, 1. C., D. 7. Aneshansley,
and L. R. Price. 1992. Effects of
voltages on cows over a complete
lactation. 1. Milk production and
composition; 2. Health and repro-
duction. fournal of Dairy Science
75:2719-25,2726-32.

Gupta, R., and K. G. Gebremedbin.
1992. Resistance distributions of a
metal-plate-connected wood truss.
Forest Products Journal 42(7/8):11-
16.

Gupta, R., K. G. Gebremedbin, and
7. R. Cooke. (1992). Analysis of
metal-plate-connected wood
trusses with semi-rigid joints.
Transactions of the ASAE 35(3):
1011-18.

Gupta, R., K. G. Gebremedbin, and
M. D. Grigoriu. 1992. Characteriz-
ing the strength of wood truss
joints. Transactions of the ASAE
35(4):1286-90.

Nektarios, P. A., T. S. Steenhuis, and
M. Petrovic. 1992. Contamination
hazard of chemical flow from
cultivation of sandy turfgrass sites.
Paper read at 84th Annual Meet-
ing, American Society of
Agronomy, 1-6 November 1992,
in Minneapolis, MN. (Agronomy
Abstracts, p. 224.)

Pannabecker, T L., D. .
Aneshansley, and K. W. Beyenbach.
1992. Unique elctrophysiological
effects of dinitrophenol in mal-
pighian tubules. American Fournal
of Physiology 263(3):R607-14

Parlange, 7.-Y., T S. Steenbuis, C.
Fuentes, and R. Haverkamp. 1992.
Soil properties:Measurements and
constraints. Paper read at Ameri-
can Geophysical Union Fall
Meeting, 7-11 December 1992, in
San Francisco, CA. Abstract in
EOS 73(43, suppl.):204.

Piverz, B. E., J. W. Kelsey, T. S.
Steenbuis, and M. Alexander. 1992.
Fast lane (bacterial) life . Paper
read at 84th Annual Meeting,
American Society of Agronomy, 1-
6 November 1992, in Minneapolis,
MN. (Agronomy Abstracts, p. 53.)

Scott, C. A,, and M. F. Walter.
1992. Local knowledge and con-
ventional soil science approaches
to erosional processes in the Shiva-
lik Himalaya. Mountain Research
and Development 13(1):61-72.

Shalit, G., T S. Steenhuis, 7. Boll, L.
D. Geobring, H. A. M. Hakvoort,
and H. Van Es. 1992. Solute con-
centradon prediction in agricul-
tural drainage lines under struc-
tured soil. Paper read at 6th
International Drainage Sympo-
sium, 13-15 December 1992, in
Nashwille, TN.

Steenbuis, T. S., 7. Boll, 1. Merwin,
7. Selker, and S. Saul. 1992. Wick,
zero tension, and other solute
samplers evaluated for two soils.
Paper read at 84th Annual Meet-
ing, American Society of
Agronomy, 1-6 November 1992,
in Minneapolis, MN. (Agronomy
Abstracts, p. 228.)

Steenbuis, T S., S. Rice, §. Boll, I.
Merwin, and J. Selker. 1992. Solute
samplers for the vadose zone.
Paper read at American Geophysi-
cal Union Fall Meeting, 7-11
December 1992, in San Francisco,
CA. Abstractin EOS 73(43,
suppl.):209.

Throop, 7. A., D. . Aneshansley, and
B. L. Upchurch. 1992. Near-IR
and color imaging for bruise
detection on golden delicious
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apples. Proceedings of SPIE
1853(4):1-9.

Upchurch, B. L., and 7. A. Throop.
1992. Time effects on near-IR
imaging for detecting bruises on
apples. Proceedings of SPIE 1835(3):
1-10.

APPLIED
AND ENGINEERING
PHYSICS

Billington, A. P., N. Matsubara, W/
W Webb, and G. P. Hess. 1992.
Protein conformational changes in
the ms time region investigated
with a laser pulse photolysis tech-
nique. In Techniques in protein
chemistry ,vol. 3, ed. R. H.
Angeletti, pp. 417-28. Boston:
Academic Press.

Denk, W., R. M. Keolian, and W W,
Webb. 1992. Mechanical response
of frog saccular hair bundles to the
aminoglycoside block of mechano-
electrical transduction. Fournal of
Neuraphysiology 68:927-32.

Denk, W., and W. W, Webb. 1992.
Forward and reverse transduction
at the limit of sensitivity studied by
correlating electrical and
mechancial fluctuations in frog

saccular hair cells. Hearing Research
60:89-102.

Hallen, H. D., A. Fernandez, T.
Huang, 7. Silcox, and R. 4.
Bubrman. 1992. Hot electron
interactions at the gold-silicon

interface. Physical Review Letters
69:2931-34.

Huallen, H. D., A. Fernandez, T.
Huang, 7. Silcox, and R. A.
Bubrman. 1992. Scattering and
spectral shape in ballistic electron
emission miscroscopy of NiSi,-
Si(111) and Au-Si samples. Physical
Review B 46(11):7256-59.

Hillyard, S., R. F. Loane, and 7.
Silcox. (1992.) Annular dark field
images of crystals. In Proceedings,
50th Annual Meeting, Electron
Microscopy Society of America, ed. G.
W. Bailey, pp. 1222-23. San
Francisco, CA: San Francisco
Press.

Hoffinan, S. A., D. §. Thiel, and D.
H. Bilderback. 1992. Submicron x-
ray imaging and Laue diffraction
applications of tapered glass
capillaries. Proceedings of SPIE
1740:252-57.

Kaisig, M., T. Tajima, and R. V E.
Lovelace. (1992). Magnetic inter-

change instability of accretion disks.
Astrophysical Journal 386:83-89.

Liboff, R.L. (19924.) Bohr-van
Leuwan theorem for non-magne-
tization and plasma non-confine-
ment. Journal of Physics A
25(15):1L.931-33.

. (19926.) Charged particle
creation in the steady-state uni-
verse. Astrophysical Journal
348(1):12-14.

. (1992¢.) The continuum
model in astrophysics. Astrophysical
Fournal 390(1):1-4.

. 19924. Display of real-
space scattering in the Ewald
construction. American Journal of
Physics 60(12):1152.

. (1992¢.) Generalized
newtonian force and hidden mass.
Astrophysical Fournal 397(2):L71-
73.

. (1992f) Quantum transi-
tion of a deuteron beam. Physics
Letters A 166(5-6):416-18.
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