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Variations in Sediment Sources and Yields in the Finger Lakes  

and Catskills Regions of New York 

 

ABSTRACT 

    The proportional contributions of stream bank and surface sources to fine sediment loads in 

watersheds in New York State were quantified with uncertainty analysis.  Eroding streamside glacial 

drift, including   glaciolacustrine deposits, were examined to help explain variations in the proportional 

contributions made by bank erosion. Sediment sources were quantified by comparing concentrations of 

the bomb-derived radionuclide 137Cs in fluvial sediment with sediment from potential source areas such 

as agricultural soils, forest soils and stream banks.   

        To compare sediment sources in streams where deposits of fine-grained glacial drift were abundant 

with watersheds that lacked moderate or extensive streamside deposits, samples were taken from fifteen 

watersheds in the region.  The mean contribution of bank erosion to sediment loads in the six streams 

with glaciolacustrine deposits was 60% (range  46 to 76%). The proportional contribution of bank 

erosion was also important in one stream lacking glaciolacustrine deposits  (57%)  but was less 

important in the remainder with contributions ranging from 0 to 46 %.    Data from this study on the 

varying contributions of bank erosion and data from past studies of sediment yield in fifteen watersheds 

of New York State suggest that eroding streamside  glacial deposits dominate sediment yield in many 

watersheds.  In other watersheds, past impacts to streams such as channelization have also resulted in 

high levels of bank erosion.  

Key words: Bank erosion, sediment sources, tracers, New York State, 137Cs. 
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Eroding channel banks are thought to be a major source of sediment in some regions of the U.S. 

(USDA-SCS, 1975) although there have been only a few attempts to quantify this source (Brigham et 

al., 2001; Glasmann, 1997; Nagle and Ritchie, 1999; Nagle and Ritchie, 2004; Odgaard, 1987; Sekely et 

al., 2002).   In drainages with a large capacity to store sediment, much of the stream sediment may be 

from eroding banks in riparian areas or gullies (Olley et al., 1993; Wallbrink et al.,1996).  It was 

estimated that more than 50% of the annual sediment yield of Illinois streams comes from bank and bed 

erosion (National Research Council, 1992).    

High rates of bank erosion in northern North America also appear to be associated with glacial 

geology in some locations For example, Ashmore (1993) concluded that in most of Canada, stream and 

near- stream valley sides are the dominant sediment sources, a legacy of glaciation that left large 

quantities of  readily erodible fine sediment in the landscape.  Gordon (1979) estimated that the vast 

portion of the sediment moved by the Connecticut River over the last 8000 years was from erosion of 

glacial lake deposits, a pattern that continued even as much of the hillside land was cleared for 

agriculture by Euro-American settlers.   Sekely et al. (2002) estimated that between 31 and 44% of the 

total annual suspended sediment load in the Blue Earth River of Minnesota was from slumping of 

streamside glacial drift deposits.  

The objective of the present study was to quantify the proportional contributions of surface and 

bank erosion to sediment yield in streams of the southern Cayuga Lake basin and nearby watersheds in 

New York State, interpret our findings in relation to the wider literature on sediment sources and yields 

in our study region, and to find evidence that  clearing and land use changes in the early to mid 19th 

century might  still be  impacting  sediment yields in central New York watersheds.  
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Study Area  

 

Cayuga Lake is located in the Glaciated Allegheny Plateau physiographic province (Fenneman, 

1938) in central New York State (Figure 1).   The southern basin of Cayuga Lake is included on New 

York State’s Priority Water Bodies List with sediment listed as the primary pollutant (Genesee/Finger 

Lakes Regional Planning Council 2001).   A field survey of 1200 sites indicated stream bank erosion as 

a serious sediment source problem in parts of the southern Cayuga basin   (Cayuga Lake Watershed 

Intermunicipal Organization,  2000). 

Cayuga Lake is in a glacial valley with a watershed encompassing 2041 km2.  Annual precipitation 

at Ithaca NY averages 80 cm, evenly distributed throughout the year.  The altitude of the lake is 116 m 

above sea level.  The watershed is characterized by low relief in its northern portion and higher 

elevations and steeper slopes in the southern portion. The upland plateau is at an elevation of 249-298 m 

with hills extending to about 600 m. The land cover in this southern portion is principally forested 

upland or forested wetland.  Surficial geology of the majority of the Cayuga Lake watershed consists of 

till of variable texture and thickness. Most soils in the watershed formed in different types of deposits 

resulting from glaciation. Glacial till is the most extensive source of parent material, but other less 

extensive parent materials in the watershed include  glaciolacustrine sediments and glaciofluvial 

(outwash) deposits. 

The Catskills mountain region (Figure 1) is surrounded by the glaciated Allegheny Plateau except 

on the east side where it borders the Hudson Valley physiographic province (Fenneman, 1938). The 

Catskills rise higher than the neighboring plateau and although structurally a part of it, constitute a 

distinct geological unit. The fact that the highest mountains rise about 600 meters above the adjacent 

parts of the Allegheny plateau seems to be due to the superior resistance of the coarse textured rocks of 
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which they are composed.  (Rich 1934).   Glacial deposits in the Catskills basin are primarily till and 

outwash with minimal areas of proglacial lacustrine deposits (Cadwell, 1986).  

The Catskills study watersheds ranged in elevation from 350 to 1200 meters.  Forests cover about 

75% of the area. Lower hill slopes and valley bottoms were cleared for agriculture and pasture in the 

19th century but most hill slope land has since reverted to forest and row crop agriculture is now 

concentrated in main valley bottoms though  much  hill land  is still in pasture.   The Catskills region is 

the principal contributor to the New York City water supply system.  A pressing water quality concern is 

the supply of sediment to the reservoirs. In addition to impacts on water clarity, sediment is the principal 

vector carrying phosphorus to reservoirs (National Research Council, 2000). 

 

Methods  

 

Background: Sediment tracers 

Sediment provenance can be determined by comparing the properties of samples collected from 

streams with potential source areas such as agricultural soils, forests and channel banks. There have 

been a number of methods used to fingerprint source areas of fluvial sediment. These include particulate 

phosphorus (Hasholt, 1988), mineral magnetic measurements (Slattery et al., 1995), the identification of 

clay minerals (Glasman, 1997; Youngberg and Klingeman, 1971),  and sediment carbon and nitrogen 

(Peart and Walling, 1988,1986; Walling and Bradley, 1990; Walling et al., 1993; Collins et al., 1997). 

The use of mixing models to identify the relative contribution of different sources has been 

demonstrated and examined in detail in the literature (Foster and Lees, 2000).  Successful use of bomb-

derived and natural radionuclides in sediment tracer work has been  reported  in  Poland (Froehlich and 

Walling  1997), Australia (Olley et al., 1993; Wallbrink et al.,  1996; Wallbrink et al., 1998), the US 
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Midwest (Brigham et al., 2001, Matisoff et al., 2002) and the U.S. Northwest (Nagle and Ritchie, 1999 

2004).    

In this study the nuclear bomb-derived radionuclide 137Cs was used as a tracer to quantify the 

sources of fluvial sediment in the study streams.   Atmospheric nuclear tests in the 1950’s and early 

1960’s distributed radioactive fallout 137Cs around the globe.   Cesium-137 was deposited in 

precipitation and adsorbed by soil where much of it still remains (half-life is 30.17 years).  Fallout levels 

peaked in 1963 and with the ban on atmospheric tests, subsequently declined to minimal levels.  

Atmospheric-borne radionuclides accumulate near the soil surface, with 137Cs concentrated within 30 

cm of the surface (Wallbrink and Murray, 1996). General source areas of sediment can be identified 

based on variations in concentrations of bomb-fallout and natural radionuclides. This tracer method is 

effective for  distinguishing  surface-derived sediment from sheet and shallow rill erosion and sediment 

from gullies and stream channel walls because channel and gully walls deeper than 30 cm usually 

contain little or no 137Cs. By comparing 137Cs concentrations in stream sediment with concentrations 

in surface soils and channel banks, a simple mixing model (Wallbrink et al., 1996) can be used to 

quantify the proportion of stream sediment derived from surface or bank sources.  Walling ( 2004) 

reported the effective use of a simple mixing model using just Cs-137 to distinguish between sediment 

from surface sources and gullies.  Other authors  have also reported the use of  simple mixing  models 

for distinguishing between bank/gully walls  and surface sources of sediments ( Brigham et al 2001, 

Wallbrink et al 1998, Zhang et al 1995 and 1997).      

 

Field sampling 

    New York State surficial geologic maps (Cadwell, 1986), maps of locations of severe bank erosion in 

the southern Cayuga Basin compiled by a local agency (Cayuga Lake Watershed Intermunicipal 
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Organization, 2000)  and extensive field reconnaissance were used to identify the location and relative 

extent of streamside glaciolacustrine deposits and areas of bank erosion in the study watersheds.  

Actively eroding banks were identified  in the field by recently exposed roots and sediment deposits at 

their base. Banks with herbaceous, grassy or woody vegetation were considered not  to be actively 

eroding.   Stream sediment samples were collected from a total of 81 locations distributed along six  

tributary streams in the southern Cayuga Lake basin. Thirty three samples were also collected from nine 

other watersheds in the Finger Lakes and Catskills regions where glaciolacustrine deposits were not 

prominent.  Samples were taken where public access was possible and recent fine sediment deposition 

was obvious. These included Cornell University lands, New York State forest lands, fishing access sites 

and near road bridges. In some watersheds, such locations with recent fine sediment deposition were 

difficult to find and therefore fewer samples were collected.  

Sediment samples were taken from the top 4 cm of recent overbank deposits immediately adjacent 

to the active channels, recent backwater deposits, deposits behind five dams in three streams, and four 

beaver impoundments in three streams.  Samples were taken along the length of the streams and in some 

first and second order tributaries in order to examine variability in sediment sources from the 

headwaters to the mouths of the watersheds. Extensive field reconnaissance indicated that in many 

watersheds, the largest, eroding bank deposits were most often concentrated in the lower reaches of the 

watersheds and in wider valley positions along third and fourth order channels.  

Six Mile Creek was examined the most intensively of all study streams (30 samples) because  it is 

the primary water source for the City of Ithaca, New York and sediment is of the most immediate 

concern. For the purpose of determining the overall percentages of bank and surface derived sediment 

for the entire Six Mile Creek watershed, only those stream samples taken in the lower fourth order 

channel were used in the analysis since they incorporate sediment from a larger area of the watershed.    

Additional samples in the upper headwater areas of Six Mile Creek were collected in first and second 
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order tributaries to examine variations in sediment sources in small areas. The headwaters of Fall Creek 

were sampled intensively to examine variability in sediment sources but, again, only those samples 

taken from the lower fourth order channel were used in the analysis of total contribution of bank 

erosion.  

Some other studies of sediment tracers have used pumps to obtain large water samples from which 

suspended sediment was separated by a centrifuge.  Symader and Strunk (1992) described some of the 

difficulties with the use of suspended sediment to identify source areas.  Two of the principal problems 

are the enrichment of suspended sediment in fines and in organic matter relative to the sources and the 

transformation of sediment properties within the fluvial system.  Recently published work on the use of 

tracers contend that the use of recent overbank deposits enable the contributions of sediment sources to 

be identified more reliably and the long-term loading from individual sources to be assessed (Bottrill et 

al., 2000). Therefore, the data collected for this study on overbank sediment should be compared with 

caution to data on suspended sediment. To determine whether concentrations in flocculated suspended 

sediments were similar to those obtained in floodplain samples, three samples were also taken from 

sediment settling ponds at water treatment plants located in the lower watersheds of two creeks in the 

Cayuga Lake basin to determine whether concentrations in suspended sediments were similar to those 

obtained in floodplain samples. 

Bank samples were collected by scraping several centimeters in the mid portion of 26 large, 

actively eroding banks ranging from 1.5 m to 20 m in height.  To characterize surface soils, 184 samples 

were collected from 23 sites distributed around the watersheds using a 5 cm diameter corer to a depth of 

10 cm.  To accommodate local spatial variability, each surface sample consisted of eight cores taken at 

least 3 m apart and composited for analysis.  The surface sites that were separately characterized for 

radionuclide concentrations included 13 samples from currently cropped agricultural fields, 5  from 

pastures, and 5 from forested areas. 
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Laboratory analysis  

To minimize the influence of differences  in particle size composition between source materials and 

channel sediment on the values of the fingerprint properties, all measurements of  137Cs were 

undertaken on the <63 µm fraction. The samples were dried, lightly ground and sieved to separate out 

the <63 µm fraction.  The samples were analyzed for 137Cs concentrations at the USDA-Agricultural 

Research Service Hydrology and Remote Sensing Laboratory in Beltsville, MD. Gamma-ray analyses 

were performed using the Canberra-2000 Genie-2000 Spectroscopy System. The system is calibrated 

and efficiency determined using an analytic mixed radionuclide standard (10 nuclides), the calibration of 

which can be traced to US National Institute of Standards and Technology. The count time for each 

sample was 30,000 seconds, providing a measurement precision of ± 4 to 5% on samples.  

 

Data analysis  

To quantify the relative contributions of bank and cultivated surface sediment sources, data on 

137Cs concentration were analyzed with a mixing model. This approach has been used effectively both 

with multiple tracers and with Cs-137 alone to distinguish between sediment from surface sources and 

gullies.  Other authors have also used simple mixing models for distinguishing between bank/gully walls 

and surface sources of sediments (Brigham et al 2001, Wallbrink et al 1998, Zhang et al. 1995 and 

1997).  The model is shown in Equation 1 (Wallbrink et al., 1996). 

 Cs = Pr-Pb    x 100                (Eq. 1)  

Ps -Pb  
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Where:   

Cs = contribution from cultivated surface sources (%),  

Pr = value of 137Cs for stream sediment,  
Ps = value of 137Cs for cultivated soil,  

and Pb = value of 137Cs for bank material.   
 

      To account for uncertainty in the mixing model, we used quantitative uncertainty analysis, 

specifically a Monte Carlo approach.  In this approach, model parameters are represented not as single 

values, such as the mean, but rather as statistical distributions of values. Samples are taken from these 

distributions and used in the model, and this process is repeated thousands of times to produce a large 

number of predicted values (Morgan and Henrion, 1990).  The 50th percentile of this distribution of 

values of Cs represents the median prediction, and other quantiles can be used as measures of dispersion 

of the predicted value. 

     For our analysis, distribution functions were fit to sample data for each of the parameters in Equation 

1, and then values were selected from each distribution using Latin Hypercube sampling using @Risk 

and BestFit software (Version: Professional 4.5, Palisade Corporation, Ithaca, NY).  The parameters 

were assumed to be independent of each other, and surface soil contributions to stream sediment were 

assumed to come from cultivated land, not forest or pasture land.  Separate analyses were conducted for 

each stream, and 100,000 iterations were performed for each analysis to produce numerically stable 

results. The result of the quantitative uncertainty analysis for each stream is the percentage of sediment 

from stream banks versus cultivated land represented as a distribution of predicted values (Equation 1).  

For most streams, we present 3 percentiles of this distribution, the 20th, 50th, and 80th.  However, some 

streams had 3 or fewer stream sediment samples, and for these streams we present only the 50th 
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percentile as a predicted value. Bank samples were not available for all of the streams and for these 

streams we used a distribution fit to the data for all bank samples.  Similarly, a single distribution 

function was fit to samples from cultivated land and this distribution was used in analyses for each 

stream. 

 

Results 

Mean levels of 137Cs were much lower for bank samples than for surface samples (P<0.05) (Tables 

1 and 2).  The low levels of  137Cs in the bank samples was expected because the surfaces of most 

actively eroding banks were not exposed to atomic bomb fallout during the highest fallout years around 

1960.  Out of 26 bank samples, only 5 had detectable 137Cs present.  Mean levels of 137Cs were much 

higher (P<0.05)  for forest soil (24.1 mBq g-1) and pastures (23.7 mBq g-1) than cultivated lands (11.5 

mBq g-1), while no difference was observed between forests and pastures, indicating that little or no soil 

has been eroded or moved on pastures since the peak  fallout period in 1963.  Levels of  137Cs on 

cultivated lands also showed the typical high variability  (7.7-16.36 mBq g-1  ) that results from the 

mixing of  137Cs -rich surface layers  by cultivation and the erosion of soil from upper slopes and 

subsequent deposition on lower slopes (Nagle et al., 2000, Nagle and Ritchie 2004).  The results from 

the three water treatment settling pond samples from two streams were similar to those from the lower 

watershed stream samples; the mean for these samples was 2.2 mBq g-1  (range: 1.76-2.65). 

 

 Based on the results of the mixing model, the most likely contribution of bank erosion to sediment 

loads in the six Cayuga watersheds ranged from 8 to 76% with a mean of 54% (Table 2).  Based on the 

quantitative uncertainty analysis, these estimates are more precise for some streams than others (Figure 

2) . For example, for Fall Creek in the Cayuga Basin, there is a 20% chance that the contribution of 
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banks was as low as 9% or as high as 84% (Table 2). However, for Wright Creek in the Catskills, this 

range was only 0 to 9%.   

     Although  these data indicate that stream banks were the dominant sediment source overall in the 

southern Cayuga basin, 137Cs concentrations in sediment samples were much higher in the headwaters 

of the  Six Mile Creek watershed, indicating that surface erosion is the dominant sediment source in  

forested headwater streams with few eroding banks. Samples from  Six Mile Creek, the most intensively 

sampled stream (30 samples including the forested headwater  reaches), showed 137Cs concentrations  

ranging from 0 to 43 mBq g-1, with much  higher mean values found in the headwaters (13.9 mBq g-1 ) 

than in the lower watershed  (2.7 mBq g-1).  The highest levels were found in samples from first order 

streams flowing through forested lands in the steep headwaters indicating surface soil eroded from the 

top few centimeters where the 137Cs had not been diluted by mixing from cultivation.  Similarly, the 

upper reaches of Fall Creek were dominated by surface sources with high 137Cs concentration values 

(17.9 mBq g-1).  Upper Fall Creek has some of the highest concentrations of crop land in the basin. 

Samples from the upper third of Virgil Creek (8.3 mBq g-1) also indicated the dominance of surface 

sediment sources from cultivated lands in the more intensively cropped upper valley. Field 

reconnaissance indicated that both upper Virgil and Fall Creeks lack the large eroding streambanks 

characteristic of their mid and lower reaches. 

Samples collected from most other floodplain sites in regional watersheds indicated  proportionally 

lower contributions of bank erosion (Table 2) compared with most streams in the southern Cayuga 

basin. Given similar rainfall levels, it can be assumed that 137Cs concentrations in surface soils are 

similar to those for the Cayuga streams.   Bank sediment sources appear to be much less important in 

streams in the region lacking extensive eroding streamside glaciolacustrine and glacial drift deposits 

(Table 2) characteristic of some streams in the southern Cayuga basin.  For example, the results for 
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Trout Creek and the West Branch of the Delaware River indicate that bank erosion accounted for little 

or none of the fluvial sediment in these streams.  In contrast to this pattern  of lower bank erosion in the 

sandstone dominated western Catskills, sampling the northern Catskills in the Schoharie River drainage 

which is primarily shale bedrock,  indicated relatively high bank erosion in the Westkill and Batavia Kill 

drainages (56 and 46% bank sources respectively, Table 2).  Even though the available maps do not 

show  that  fine grained glaciolacustine  deposits are prominent, field observations indicate their 

importance.  

 

     In tracer studies there are several potential sources of uncertainty in the estimates of sediment 

sources. We have addressed important uncertainties by using quantitative uncertainty analysis. As 

expected, when fewer samples are collected, or there is much variation among samples from the same 

source area, there is more uncertainty in predictions of the amount of sediment from banks versus 

cultivated lands (Table 2).  However, not all potential sources of uncertainty were included in our 

model. One such issue is the influence of particle size differences between source and channel 

sediments. No analysis of particle sizes was performed in this study but as has been standard procedure 

in tracer studies, all samples were sieved to separate out the <63 µm fraction (silts and clays) for 

analysis. Also, by using overbank samples from flood plains, we avoided the problems with particle size 

enrichment that can occur when using suspended sediment.    

   Variability among samples from cultivated soils is common, and results from variation in 

cultivation, soil erosion and re-deposition.  Variability among bank samples is also common, because 

most bank samples have no 137Cs, so even a few samples with measurable counts results in variability 

(Nagle and Ritchie 1999).   Despite these necessary reflections on uncertainty in these estimates, the 

analysis demonstrates clear differences in the percentage of stream sediment that can be attributed to 

bank erosion among many of the 15 study streams.   
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Discussion 

Sediment sources in regional watersheds 

 The long term decline in agriculture, abandonment of steeper cultivated land, and changes in 

agricultural practices have resulted in greatly reduced runoff and erosion from croplands across parts of 

the  U.S. (Trimble and Crosson, 2000) including the Northeast (Whitney, 1994); hence, many rural 

watersheds in central New York appear to be in better condition than they were historically.  However 

analysis of radionuclides in lake cores (discussed below) indicate that sediment loads in the southern 

Cayuga basin do not appear to have declined in recent decades with changes in land use. More recent 

impacts include road building and suburban housing developments which often result in large, short-

term increases in sediment and increased runoff from paved areas (Leopold, 1994). Bank erosion also 

may have accelerated in places, especially in those streams which were extensively channelized after the 

1930s.  

Yager (2001) used radionuclides to analyze nine sediment cores from Cayuga Lake and found pre-

settlement sediment accumulation rates of less than 1 mm yr-1 based on radiocarbon dates for wood 

fragments found in two cores. Sedimentation rates of 2.4 to 6 mm yr-1  since 1900 were computed with 

210Pb from six cores. Since the mid-20th century, sedimentation rates have remained high, with rates of 

2.4 to 8.1 mm yr-1 since the 1950’s computed from the maximum depth of 137Cs penetration in nine 

cores.  With the reversion of hillside crop lands to forest and likely decline in agricultural erosion across 

most of the Cayuga watershed, the continuing high sediment yields apparently result from continuing 

high levels of bank erosion.  Studies from the other regions suggest that much of the current stream 

sediment represents eroded agricultural soil from the 19th century (Nagle and Ritchie, 2004, Trimble 

1983; Phillips 1991).  
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In glaciated regions of the Northeast, differences among watersheds in the amount of eroded 

sediment caused by bank erosion may be determined in part by the presence of streamside glacial drift 

deposits, and in particular, the predominance of fine-grained glaciolacustrine deposits.  Bent (2000) 

reported that in the Housatonic basin in New England, the occurrence of stratified drift deposits was 

highly correlated with suspended sediment yields for eight subbasins; the effect of these deposits on 

sediment yields was thought to be greater where they were glaciolacustine deposits.  Stone and 

Sauderson (1996) found that the highest sediment yields were found in Canadian subbasins with 

agricultural and industrial development on fine grained glaciolacustrine materials. Similarly, Crosby and 

Deboer (1995) noted the dominant contribution of glaciofluvial and glaciolacustrine deposits in main 

valley floors to suspended sediment loads in the Assiniboine-White River system.  

 

Regional observations of sediment yield 

Bank erosion is an important sediment contributor in most of the tributaries of the southern Cayuga 

basin although data indicate that suspended sediment production is not high in comparison with the 

average regional sediment yield estimate of 90 tons km-2 yr-1  for the Northeast (Leopold 1994; Table 3).  

However, large variations in overall sediment yield in different tributaries might be attributed to varying 

contributions from bank erosion.   For example, measurements on two major tributaries of Fall Creek 

(Fig. 2 ) in the early 1970s (D.R. Bouldin, unpublished data) indicated much higher sediment yields 

from Virgil Creek (57 tons km-2 yr-1  ) than from Upper Fall Creek (23 tons km-2 yr-1  ), probably owing 

to contrasts between the channels of these streams.  Upper Fall Creek has extensive valley bottom 

wetlands, a densely vegetated floodplain area and active beaver dams that capture much eroded 

sediment. Except for a few places where the stream was channelized in the past, large stream cut banks 

are uncommon.  In contrast, as Virgil Creek flows below the Allegheny escarpment, it passes through an 

area of glaciolacustrine and unstable glacial drift deposits that are undermined as the stream cuts into the 
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toe of the steep slope.  Virgil Creek also has direct input of sediment from long stretches of eroding 

banks in its lower valley.  Aerial photos indicate that since 1938, parts of the lower stream were rerouted 

and channelized.    

Strong support for the hypothesis that glacial drift is a primary source of sediment in the Glaciated 

Allegheny Plateau physiographic region can also be found in the results from the a study in the Genesee 

River basin that was the most intensive effort to measure sediment yields in New York State (EPA, 

1991).  Sediment yields in parts of the Genesee basin are as high as 204 tons km-2 yr-1  (Table 3), among 

the highest sediment yields in the Northeast, and largely associated with glacial deposits.  

   

A USGS Susquehanna River basin study also notes that some of the highest sediment yields are 

from the glaciated section of the basin and major variations in yields appear to be associated with fine-

grained glacial deposits (Williams and Reed, 1972).  Sediment yields in the eastern part of the N.Y. 

Susquehanna basin are generally much lower than those in the western portion (Table 3), likely because 

of the coarser sandstone bedrock in the east and relatively fewer deposits of fine-grained glacial drift.  In 

much of the Catskills, an area lacking large areas of  eroding glacial drift deposits, the relatively low 

sediment yields of 24 tons km-2 yr-1 for the West Branch of the Delaware (Table 3) also suggest the 

likely influence of glacial deposits on sediment yields. 

Evidence from our study also points towards the importance of glacial deposits as important 

sources of high bank erosion in parts of central New York. In particular, several of the watersheds with 

especially high proportion of sediment contributed by bank erosion (Table 2) are those with extensive 

glaciolacustrine deposits. For example, the lower section of Six Mile Creek has some of the most 

extensive and deepest glaciolacustrine deposits in this region (Cadwell, 1986; Karig et al., 1995). Many 

stretches of the lower stream are characterized by slumping hillslopes and large eroding banks along the 

channel.  Even forested slopes with minimal human impact exhibit this instability.  Suspended sediment 
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yields in this creek were 104 and 133 tons km-2 yr-1 for 2000 and 2001 respectively (USGS 2001, 2002) 

(Table 3).  Although these values are not unusually high in comparison with the regional average, this 

short period of record does not coincide with any major flood events that would inflate the long term 

estimates. Karig (2001), citing reservoir sedimentation estimates made prior to 1978, estimated a longer 

term average sediment yield of 197 tons km-2 yr-1  for Six Mile Creek including bedload.   Conversely, in 

catchments with much smaller areas of mapped glacial drift deposits in the Catskills, both lower 

proportional contribution of bank erosion and low sediment yields (Table 2) support the hypothesis that 

glacial drift plays a dominant role in regional sediment yields (Table 3).  

Our data also revealed some clear exceptions to the general pattern that differences among streams 

in bank erosion are explained by glacial drift deposits. For example, although surface geology maps of 

Salmon Creek in the southern Cayuga basin do not show extensive glaciolacustrine deposits, bank 

erosion still contributed an estimated 57% of the sediment load.  

 

One of the problems with interpreting the impacts of glacial deposits is that they are not mapped 

comprehensively on many soil surveys or geological maps. Large eroding glacial deposits such as those 

found along Fall Creek and along the lower part of Salmon Creek are not usually noted on standard soil 

survey or geological maps. Many of the eroding banks on Fall Creek are also not “glaciolacustrine” but 

varied glacial drift deposits that buried the ancient channel of Fall Creek and are now eroding.  Much of 

the extensive glaciolacustrine deposits exposed by erosion in lower Six Mile Creek are not indicated on 

the New York State Surficial Geologic Map (Cadwell, 1986), since these buried deposits are not present 

on the surface.   The longest stretches of eroding banks along Cayuga Inlet are alluvial, not glacial drift 

deposits.   

 

The role of stream channel changes in bank erosion 
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The predominance of stream bank sediment sources in the southern Cayuga Lake basin raises 

questions about how changes in stream channels have increased bank erosion.   Erosion of glacial 

deposits and other stream bank material was likely increased by human impacts on stream channels 

since Euro-American settlement. These processes have played out in varying ways in different 

watersheds in this region. A lingering impact of historical upland erosion is high levels of bank erosion 

in response to changes in stream channel morphology. Historically, dense riparian vegetation probably 

protected many stream banks and spread flood flows, stabilizing alluvial sediment.  Direct post-

settlement impacts on stream channels included sediment eroded from hillsides, increased peak flows 

resulting from forest clearing and urbanization, the elimination of beavers, trampling by livestock, and 

impacts from agricultural development.  

Sediment yields were increased by higher runoff from cleared hillsides and accelerated erosion of 

unstable glacial outwash deposits may have increased the amount of bedload moving through the 

channels, resulting in wider channels and increased pressure on banks. Based on the examination of the 

bankfull dimensions of abandoned stream channels, Fitzpatrick et al.  (1999) estimated that volumes of 

bankfull flows in North Fish Creek, Wisconsin increased three-fold after agricultural clearing in the late 

19th century. Knox (1977) estimated a similar three- to five-fold increase in bankfull flows in other 

Wisconsin streams.  Channels of some presettlement Wisconsin streams also apparently had cross 

sectional forms that differed dramatically from present day channels.  The impact of agricultural land 

use caused some headwater channels to widen greatly. Transportation and deposition of bedload 

sediment accompanied by bank erosion was a principal cause of channel widening. Channel migrations 

and lateral accretions of sediments were greatest where downstream reductions in channel gradient 

concentrated the deposition of bedload sediments (Knox 1977).  

Another response in some streams to the increase in peak flows was channel incision.  As these 

channels eventually reduced their slopes, bank cutting was accelerated as channels reestablished their 
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meanders. With the adoption of soil conservation measures and reversion of much marginal agricultural 

land to forest, these flood peaks have decreased but impacts on stream channels and bank cutting have 

often persisted (Fitzpatrick et al., 1999). 

     Sediment eroded from agricultural lands in the early to mid 19th century and stored as alluvial 

deposits in the watersheds has continued to be a major source of sediment in many drainages in the 

upper Midwest (Trimble, 1983) and  the Southeast (Phillips, 1991).  Indeed, on the basis of seven 14C-

dated samples of buried wood from four streams in the Cayuga basin (unpublished data), we observed 

that in many places streams are now cutting through post-settlement alluvial deposits.  However, in 

several locations streams have also incised into older alluvial material predating Euro–American 

settlement.  These incised channels are likely due to a combination of factors including increased peak 

flows after agricultural clearing, deliberate channelization in some locations, the elimination of beaver 

200 years ago (Dobyns, 1981; Parker et al., 1985), and channel changes as streams pushed out post-

settlement alluvium.  Deep incisions can result in increased bank cutting as the stream reestablishes a 

stable floodplain inside the channel walls. Karig (2001) described the eventual stabilization of a reach of 

Six Mile Creek over a 30 year period as the stream incised a meter deeper with a vegetated flood plain 

eventually established inside stable meander bends with decreased bank cutting.  

 

The current problems with excessive sedimentation in Cayuga Lake are also a consequence of the 

elimination of the extensive wetlands that were originally at its southern end. Most of the other Finger 

Lakes have relatively more intact wetland complexes at their southern ends which filter out sediment 

from tributaries. Cayuga Inlet (Figure 1) appears to be the tributary with the most severe recent changes 

in channel morphology which is probably due to extensive channelization at its lower end in 1966. A 

field survey in 2000 identified Cayuga Inlet as the tributary with the most severe bank erosion in the 

southern Cayuga basin (Cayuga Lake Watershed Intermunicipal Organization, 2000) and this bank 
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erosion has been exacerbated in the lower reach due to extensive channelization.  Aerial photos of 

abandoned channels and field reconnaissance indicate that the present stream bottom above the most 

heavily channelized reach has incised about 1.5 meters below the pre-1966 channel bottom. The head 

cut that resulted from this channel incision has worked its way several kilometers upstream.  Although 

this incision may be only the most recent cause of bank erosion in Cayuga Inlet, it has likely 

exacerbated the problem.  As with the Six Mile Creek reach described by Karig (2001), it may be many 

years before this channel achieves stability as the stream gradually reestablishes a stable floodplain 

inside the confines of the channel walls. 

 

 

Conclusions 

Based on the use of the mixing model and uncertainty analysis,  the contribution of bank erosion to 

sediment loads in six southern Cayuga Lake watersheds ranged from 8 to 76%.  Glacial deposits appear 

to be important sources of the high bank erosion found in the study area. Several of the watersheds with 

the highest proportions of bank erosion are those with the most extensive and actively eroding 

streamside glaciolacustrine deposits.  Samples collected from most of the other watersheds indicated  

proportionally lower contributions of bank erosion  compared with most streams in the southern Cayuga 

basin. Bank sediment sources appear to be much less important in streams in the region lacking 

extensive eroding streamside glaciolacustrine and glacial drift deposits. 
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Table 1. Mean Cs-137 (mBq g-1  ) levels  for stream sediment and potential source materials.  Each surface sample was a 
composit of 8 separate cores distributed across the study slopes.  
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surface soil 
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surface soil
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23.7 

 

 
24.1 

 

 
4.8 

Range 
( mBq g-1  ) 

0-5.3 7.7-16.36 20.1-27.7 19.6-28.5 0-10.5 

 



Table 2.   Concentration of Cs-137 (mBq g-1  ) in streams and percentage of sediment from cultivated soils 
based on quantitative uncertainty analysis. 
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Lake basin 

 
Relatively 
extensive 
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*Because quantitative uncertaintly analysis was used to estimate sediment sources,   the estimate is in the form of a distribution of values. The specified 
percentiles of this distribution are shown for each stream. Note that for streams with fewer than 4 samples, only the 50th percentile result is reported. 

 



 
 

Table  3. Suspended sediment yield studies for central New York watersheds    
(in tons km-2 yr-1  ). 
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