eCommons

 

Backdoors in the Context of Learning

Other Titles

Abstract

The concept of backdoor variables has been introduced as a structural property of combinatorial problems that provides insight into the surprising ability of modern satisfiability (SAT) solvers to tackle extremely large instances. Given a backdoor variable set B, a systematic search procedure is guaranteed to succeed in efficiently deciding the problem instance independent of the order in which it explores various truth valuations of the variables in B. This definition is oblivious to the fact that "learning during search" is a key feature of modern solution procedures for various classes of combinatorial problems such as SAT and mixed integer programming (MIP). These solvers carry over often highly useful information from previously explored search branches to newly considered branches. In this work, we extend the notion of backdoors to the context of learning during search. In particular, we prove that the smallest backdoors for SAT that take into account clause learning and order-sensitivity of branching can be exponentially smaller than traditional backdoors oblivious to these solver features. We also provide an experimental comparison between backdoor sizes with and without learning.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2009-04-09T18:42:35Z

Publisher

Keywords

constraint satisfaction; problem structure; backdoor variables; clause learning

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record