eCommons

 

C3. Wildfire Effects on Spatio-temporal Soil Moisture Dynamics in the Portuguese Schist Region

Other Titles

Abstract

Increasing fire occurrence in the Mediterranean is causing alarming degradation of soils and vegetation shifts from native shrubs to invasive and highly flammable degradation-loving species. Fast reestablishment of burned native vegetation can mitigate soil degradation and associated vegetation shifts, and is enhanced by the availability of soil water after fire. We studied the spatio-temporal dynamics of soil moisture distribution in five Portuguese soils affected by wildfire in summer 2008. Burned and adjacent unburned soils were sampled in transects 2-11 days and 6 months post-fire. Samples were taken using 50 cm3 soil cores in transects (8x3 samples) and analyzed for soil moisture, water repellency, organic matter content and bulk density. Additional sampling 3, 4 and 14 months post-fire assessed the longevity of fire effects on topsoil moisture, repellency, and temperature. Results show that burned soils were consistently drier and warmer than unburned soils, which was particularly true for the top 0-2.5 cm. In addition, contrary to common belief that soil water repellency is only induced by fire, both burned and unburned soils exhibited soil water repellency, particularly in summer. Preferential flow paths, expressed as zones with higher soil moisture and lower repellency in a dry and repellent matrix, were likewise present in both burned and unburned soil. The drier and warmer soils after the fire can likely be explained by increased post-fire soil evaporation due to the decreased canopy cover, which was possibly enhanced by a reduced water holding capacity due to observed decrease in soil organic matter content and increase in dry bulk density. Given the abundance in the occurrence of preferential flow in unburned environments around the world, the existence of preferential flow patterns in this highly fire prone region is not surprising. However, it does suggest that plant (re)growth on these soils may be strongly affected by the resulting uneven distribution of soil water. Combined with the drier topsoils, this may negatively affect post-fire plant regeneration and reestablishment of canopy cover, which is important for the mitigation of post-fire land degradation.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-05

Publisher

Internet-First University Press

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record