eCommons

 

Design of Transmucosal Patch for Fentanyl Delivery to Cancer Patients

Other Titles

Abstract

Fentanyl is an analgesic that is about 80 times more potent than morphine. It is administered as a transdermal patch for chronic pain relief and as an oral transmucosal lozenge for breakthrough pain relief which is often experienced by cancer patients. The latter administration, under the brand Actiq? exploits the higher permeability of buccal mucosa to achieve a much faster onset. We developed a model of a transmucosal patch as an alternative to existing designs, in order to achieve faster pain relief, improved dosage efficiency, and greater pharmacokinetic control via an impermeable layer. We simplified the design in to 1D model with diffusion and a reaction rate, which simulates uptake fentanyl into the blood. After implementing the model in COMSOL, we calculated the pharmacokinetic profile of fentanyl in the plasma over time with first order linear non homogenous equation. Our resultant profile peaks at 20 minutes and matches Actiq??s profile. A sensitivity analysis yielded that the plasma elimination rate of fentanyl, the epithelium diffusivity and the diffusivity, thickness and distance of the impermeable layer all had a significant affect on the time to peak. A second sensitivity analysis determined that the initial concentration and diffusivity, thickness and distance of the impermeable layer had the greatest influence on peak fentanyl concentration. In conclusion, we believe that a transmucosal patch is a viable design alternative for fentanyl delivery due to it?s a rapid onset and the potential for diffusive control with the impermeable layer. Further exploration is recommended to evaluate.

Journal / Series

BEE 453

Volume & Issue

Description

Sponsorship

Date Issued

2008-07-23T19:24:58Z

Publisher

Keywords

Fentanyl Delivery; Cancer; Pain Relief

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

presentation

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record